LEADER 03540nam 2200589 450 001 9910480519103321 005 20180613001300.0 010 $a1-4704-0854-6 035 $a(CKB)3360000000464615 035 $a(EBL)3114012 035 $a(SSID)ssj0000889079 035 $a(PQKBManifestationID)11488385 035 $a(PQKBTitleCode)TC0000889079 035 $a(PQKBWorkID)10876421 035 $a(PQKB)10865972 035 $a(MiAaPQ)EBC3114012 035 $a(PPN)195413148 035 $a(EXLCZ)993360000000464615 100 $a20140908h19901990 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA multiple disjunction lemma for smooth concordance embeddings /$fThomas G. Goodwillie 210 1$aProvidence, Rhode Island, United States :$cAmerican Mathematical Society,$d1990. 210 4$d©1990 215 $a1 online resource (329 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 86, Number 431 300 $a"July 1990, Volume 86, Number 431 (first of 2 numbers)"--Cover. 311 $a0-8218-2493-7 320 $aIncludes bibliographical references. 327 $a""TABLE OF CONTENTS""; ""ABSTRACT""; ""INTRODUCTION""; ""A. Spaces of Concordances""; ""B. Known Results""; ""C. The Multiple Disjunction Lemma""; ""D. Sketch of the Proof""; ""1. The overall plan""; ""2. A stratification""; ""a. Operation B""; ""b. Operation CA?°""; ""c. Operation A""; ""d. Operation D""; ""e. Operation C""; ""f. The stratification""; ""3. Why the stratification is a stratification""; ""a. ""Relative semia???algebraicity""""; ""b. The Hilbert variety""; ""4. Keeping track of the ordering""; ""5. Using the stratification""; ""PRELIMINARIES""; ""A. Definitions, etc"" 327 $a""b. Rangea???invariance""""c. S (Z, P,N)""; ""B. Operations on Sets of Multijets""; ""1. Operation A""; ""2. Operation B""; ""3. Operation C (and CA?°)""; ""4. Operation D""; ""5. The operations preserve invariance""; ""C. Z""; ""1. Formal facts""; ""2. Codimension""; ""3. Goodness and badness""; ""D. Singular Sets for Fibered Concordances""; ""1. General position with respect to Z""; ""2. Singular sets""; ""a. S[sub(I?±)](F)""; ""b. W[sub(I?±)](F)""; ""i. Operation A""; ""ii. Operation D""; ""iii. Operation B""; ""iv. Operation C""; ""c. W[sub(I?±)] [sup((D,R))](F)""; ""III. PROOF OF THEOREM D"" 327 $a""A. Structure of the Proof""""B. Proof of (189)[sub(I?±)[sub(0)])]""; ""C. (189)[sub(a+1)] a??? (189)[sub(I?±)]""; ""1. Reduction to Claim 113""; ""2. Proof of Claim 113: beginning""; ""3. Reduction to (206)[sub(0)]""; ""4. Proof of (206)[sub(I?±)]""; ""5. (206)[sub(I?²+1)] a??? (206)[sub(I?²)]""; ""a. Reduction to Claim 117""; ""b. Proof of Claim 117""; ""D. One Last Sunny Collapse""; ""BIBLIOGRAPHY"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 86, Number 431. 606 $aConcordances (Topology) 606 $aEmbeddings (Mathematics) 606 $aPiecewise linear topology 608 $aElectronic books. 615 0$aConcordances (Topology) 615 0$aEmbeddings (Mathematics) 615 0$aPiecewise linear topology. 676 $a514 700 $aGoodwillie$b Thomas G$g(Thomas Gehret),$f1954-$0903037 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480519103321 996 $aA multiple disjunction lemma for smooth concordance embeddings$92018705 997 $aUNINA