LEADER 03938nam 2200577 450 001 9910480507603321 005 20170822144321.0 010 $a1-4704-0199-1 035 $a(CKB)3360000000464798 035 $a(EBL)3114410 035 $a(SSID)ssj0000889240 035 $a(PQKBManifestationID)11523077 035 $a(PQKBTitleCode)TC0000889240 035 $a(PQKBWorkID)10876217 035 $a(PQKB)11779858 035 $a(MiAaPQ)EBC3114410 035 $a(PPN)195414985 035 $a(EXLCZ)993360000000464798 100 $a19970509d1997 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe structure of k-CS-transitive cycle-free partial orders /$fRichard Warren 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1997. 215 $a1 online resource (183 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 614 300 $a"September 1997, volume 129, number 614 (second of 4 numbers)." 311 $a0-8218-0622-X 320 $aIncludes bibliographical references. 327 $a""Contents""; ""1 Extended Introduction""; ""1.1 Introduction""; ""1.2 Cycle-free partial orders""; ""1.3 Homogeneous structures""; ""1.4 k-connected set transitivity""; ""1.5 Finite and infinite chain CFPO[sub(s)]""; ""1.6 Elements of the classification""; ""1.7 Further work""; ""2 Preliminaries""; ""2.1 Introduction""; ""2.2 Dedekind-complete partial orders""; ""2.3 Cycle-free partial orders""; ""2.4 Concerning paths, and the density lemma""; ""2.5 Substructures, cones, and their extensions""; ""2.6 Convex cycle-free partial orders""; ""3 Properties of k-CS-transitive CFPOs"" 327 $a""3.1 Introduction""""3.2 k-CS-transivity and k-CS-homogeneity""; ""3.3 The infinite chain case""; ""3.4 The finite chain case and the bipartite theorem""; ""3.5 Sporadic and skeletal cycle-free partial orders""; ""4 Constructing CFPOs""; ""4.1 Introduction""; ""4.2 The completion theorem (Part one)""; ""4.3 The completion theorem (Part two)""; ""4.4 Useful results concerning M,M[sup(D)] and M""; ""5 Characterization and Isomorphism Theorems""; ""5.1 Introduction""; ""5.2 Characterizations in the infinite chain case""; ""5.3 The isomorphism theorems and their corollaries"" 327 $a""6 Classification of skeletal CFPOs (Part 1)""""6.1 Introduction""; ""6.2 Case A: a???Ram(M) = a???Ram(M)""; ""6.3 Case B: a???Ram(M)a??Ša???Ram(M) = I??and Ram(M) is dense""; ""6.4 Covering orders""; ""6.5 Case C: Fully covered cycle-free partial orders""; ""6.6 Case D: Partially covered cycle-free partial orders""; ""6.7 Subcase D1: The cycle-free partial orders D[sup(d,u,u')][sub(I??)]""; ""6.8 Subcase D2: The cycle-free partial orders e[sup(d,u,u')][sub(I??)]""; ""6.9 Subcase D3: The cycle-free partial orders F[sup(d,u,u')][sub(I??,z)]""; ""6.10 Summary "" 327 $a""7 Classification of skeletal CFPOs (Part 2)""""7.1 Introduction""; ""7.2 The cycle-free partial orders g[sup(u,d,u',d')][sub(z)]""; ""7.3 Case 2: The cycle-free partial orders H[sup(u,d,u',d')][sub(z)]""; ""7.4 An empty case""; ""7.5 Case 3: The remaining few""; ""7.6 Conclusions in the skeletal case""; ""Appendix: Sporadic Cycle-free Partial Orders""; ""A.1 Introduction""; ""A.2 The classification""; ""A.3 Conclusions"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 614. 606 $aPartially ordered sets 606 $aCombinatorial set theory 608 $aElectronic books. 615 0$aPartially ordered sets. 615 0$aCombinatorial set theory. 676 $a510 s 676 $a511.3/3 700 $aWarren$b Richard$f1967-$0324178 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480507603321 996 $aThe structure of k-CS-transitive cycle-free partial orders$92230352 997 $aUNINA