LEADER 02787nam 2200589 450 001 9910480336703321 005 20211029185447.0 010 $a0-8218-7589-2 010 $a0-8218-5004-0 035 $a(CKB)3240000000069528 035 $a(EBL)3112980 035 $a(SSID)ssj0000712473 035 $a(PQKBManifestationID)11448391 035 $a(PQKBTitleCode)TC0000712473 035 $a(PQKBWorkID)10644575 035 $a(PQKB)10513287 035 $a(MiAaPQ)EBC3112980 035 $a(WaSeSS)Ind00039361 035 $a(PPN)197103219 035 $a(EXLCZ)993240000000069528 100 $a19810624h19811981 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe closed graph and P-closed graph properties in general topology /$fT.R. Hamlett, L.L. Herrington 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1981] 210 4$dİ1981 215 $a1 online resource (81 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$vvolume 3 300 $aDescription based upon print version of record. 311 08$aPrint version: Hamlett, T. R. Closed graph and P-closed graph properties in general topology. Providence, Rhode Island : American Mathematical Society, [1981] xi, 68 pages ; 26 cm. Contemporary mathematics ; v. 3 9780821850046 320 $aBibliography: pages 65-68. 327 $a""Table of Contents""; ""Preface""; ""Abstract""; ""Part I""; ""1. Basic Definitions and Results""; ""2. The Closed Graph and Minimal Topological Spaces""; ""3. Some Applications to Functional Analysis""; ""4. Non-continuous Functions and the Closed Graph Property""; ""5. Characterizations of Compactness and Countable Compactness""; ""6. Points of Discontinuity""; ""Part II""; ""1. Preliminary Definitions and Theorems""; ""2. Properties of I??-closed Graphs with Respect to Y""; ""3. H(i) Spaces and I??-closed Graphs with Respect to Y"" 327 $a""4. Characterizations of C-compact, H-closed, and Minimal Hausdorff Spaces""""5. Functions with a P-closed Graph with Respect to Y""; ""6. Functions with a P-closed Graph with Respect to X""; ""Bibliography"" 410 0$aContemporary mathematics (American Mathematical Society) ;$vvolume 3. 606 $aTopological spaces 606 $aClosed graph theorems 608 $aElectronic books. 615 0$aTopological spaces. 615 0$aClosed graph theorems. 676 $a514/.322 700 $aHamlett$b T. R.$f1950-$058993 702 $aHerrington$b L. L.$f1944- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480336703321 996 $aClosed graph and p-closed graph properties in general topology$9383974 997 $aUNINA