LEADER 04433nam 2200613 450 001 9910480331503321 005 20170816143302.0 010 $a1-4704-0750-7 035 $a(CKB)3360000000464520 035 $a(EBL)3113964 035 $a(SSID)ssj0000888846 035 $a(PQKBManifestationID)11456888 035 $a(PQKBTitleCode)TC0000888846 035 $a(PQKBWorkID)10865360 035 $a(PQKB)10765467 035 $a(MiAaPQ)EBC3113964 035 $a(PPN)195412184 035 $a(EXLCZ)993360000000464520 100 $a20140909h19851985 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComputing the homology of the lambda algebra /$fMartin C. Tangora 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1985. 210 4$dİ1985 215 $a1 online resource (174 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 337 300 $a"November 1985, Volume 58, Number 337 (third of four numbers)." 311 $a0-8218-2338-8 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""Chapter 1: Introduction""; ""Chapter 2: The lambda algebra""; ""2.1. The defining structure of the lambda algebra""; ""2.2. Generating tables of relations and differentials""; ""2.3. Digression: the Adem relations in the Steenrod algebra""; ""2.4. Ordering""; ""2.5. Corollaries to the structure formulas""; ""2.6. Tri-grading when p is odd""; ""2.7. The endomorphism I??""; ""2.8. Cutting the work in half: odd endings""; ""2.9. Remarks on the image of J and vanishing lines""; ""2.10. The ""unstable"" algebras and the EHP sequence"" 327 $a""2.11. Some comments on the search for differentials""""2.12. The size of the lambda algebra""; ""Table 2.1: Actual counts, p=2, odd-ending monomials""; ""2.13. Euler characteristic check""; ""Chapter 3: The algorithms and the Curtis table""; ""3.1. Terminology""; ""3.2. The tables do not include certain towers""; ""3.3. Preliminary algorithm""; ""3.4. Obvious tags and invisible listings""; ""3.5. The LTO (leading-term-only) algorithm""; ""3.6. Some perverse examples""; ""3.7. Finiteness""; ""3.8. Correctness""; ""3.9. Shortcuts""; ""3 9 1. No small target""; ""3 9.2. Truncation"" 327 $a""3 9.3. Cycle initials""""3 9.4. Visible products ""; ""3.9.5. A certain pattern for p=2""; ""3.9.6. A useful pattern for p=2 or p=3""; ""3.9.7. Verticals, p=2""; ""3.9.8. Some patterns for p=3""; ""3.9.9. Verticals, p=3""; ""3.9.10. Product with I?ğl, p=3""; ""3.10 Using extraneous information""; ""Chapter 4: Implementation and experience""; ""4.1. The SNOBOL language""; ""4.2. Stop and restart; output""; ""4.3. Choice of algorithm""; ""4.4. Time and storage constraints""; ""4.5. Data representation""; ""4.6. The sample program""; ""4.7. Execution profiles"" 327 $a""4.8. Growth rate of the calculation""""Table 4.1. CPU time for each t, p=2""; ""Table 4.2. CPU time for each t, p=3""; ""4.9. Bad cases""; ""4.10. Recent developments""; ""Figure 4.1: Snobol program, p=2""; ""Chapter 5: Related programs""; ""5.1. The lambda algebra""; ""5.2. Table-processing programs""; ""5.3. Various programs for Curtis tables""; ""5.4. Execution profiles""; ""5.5. Product structure""; ""Chapter 6: The tables""; ""6.1. Tables 1 and 2: Curtis tables for p=2""; ""6.2. Tables 3 and 4: Curtis tables for p=3""; ""6.3. Tables 5 and 6: Curtis tables for p=3, lambdas only"" 327 $a""Table 1: p=2, stable""""Table 2: p=2, Curtis table""; ""Table 3: p=3, stable""; ""Table 4: p=3, Curtis table""; ""Table 5: p=3 lambdas only, stable""; ""Table 6: p=3 lambdas only, Curtis table""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 337. 606 $aLambda algebra$xData processing 606 $aAdams spectral sequences$xData processing 606 $aHomotopy groups$xData processing 608 $aElectronic books. 615 0$aLambda algebra$xData processing. 615 0$aAdams spectral sequences$xData processing. 615 0$aHomotopy groups$xData processing. 676 $a514 700 $aTangora$b Martin C.$041821 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480331503321 996 $aComputing the homology of the lambda algebra$92053695 997 $aUNINA