LEADER 03174nam 2200589 450 001 9910480238503321 005 20170822144320.0 010 $a1-4704-0551-2 035 $a(CKB)3360000000465121 035 $a(EBL)3114242 035 $a(SSID)ssj0000888833 035 $a(PQKBManifestationID)11487561 035 $a(PQKBTitleCode)TC0000888833 035 $a(PQKBWorkID)10881855 035 $a(PQKB)10522746 035 $a(MiAaPQ)EBC3114242 035 $a(PPN)195418263 035 $a(EXLCZ)993360000000465121 100 $a20150416h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCohomological invariants $eexceptional groups and spin groups /$fSkip Garibaldi ; with an appendix by Detlev W. Hoffmann 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$dİ2009 215 $a1 online resource (102 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 937 300 $a"Volume 200, number 937 (second of 6 numbers)." 311 $a0-8218-4404-0 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""List of Tables""; ""Preface""; ""Part I. Invariants, especially modulo an odd prime""; ""1. Definitions and notations""; ""2. Invariants of I??[sub(n)]""; ""3. Quasi-Galois extensions and invariants of Z/pZ""; ""4. An example: the mod p Bockstein map""; ""5. Restricting invariants""; ""6. Mod p invariants of PGL[sub(p)]""; ""7. Extending invariants""; ""8. Mod 3 invariants of Albert algebras""; ""Part II. Surjectivities and invariants of E[sub(6)], E[sub(7)], and E[sub(8)]""; ""9. Surjectivities: internal Chevalley modules""; ""10. New invariants from homogeneous forms"" 327 $a""11. Mod 3 invariants of simply connected E[sub(6)]""""12. Surjectivities: the highest root""; ""13. Mod 3 invariants of E[sub(7)]""; ""14. Construction of groups of type E[sub(8)]""; ""15. Mod 5 invariants of E[sub(8)]""; ""Part III. Spin groups""; ""16. Introduction to Part III""; ""17. Surjectivities: Spin[sub(n)] for 7 a??? n a??? 12""; ""18. Invariants of Spin[sub(n)] for 7 a??? n a??? 10""; ""19. Divided squares in the Grothendieck-Witt ring""; ""20. Invariants of Spin[sub(11)] and Spin[sub(12)]""; ""21. Surjectivities: Spin[sub(14)]""; ""22. Invariants of Spin[sub(14)]"" 327 $a""23. Partial summary of results""""Appendices""; ""A. Examples of anisotropic groups of type E[sub(7)]""; ""B. A generalization of the Common Slot Theorem""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 937. 606 $aGalois cohomology 606 $aLinear algebraic groups 606 $aInvariants 608 $aElectronic books. 615 0$aGalois cohomology. 615 0$aLinear algebraic groups. 615 0$aInvariants. 676 $a514/.23 700 $aGaribaldi$b Skip$f1972-$0149814 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480238503321 996 $aCohomological invariants$92269265 997 $aUNINA LEADER 01136nam 2200253la 450 001 9910482304903321 005 20221108102637.0 035 $a(UK-CbPIL)2090362898 035 $a(CKB)5500000000090123 035 $a(EXLCZ)995500000000090123 100 $a20210618d1678 uy | 101 0 $adut 135 $aurcn||||a|bb| 200 10$aEttelijcke gronden van de christelijcke religie, klaerlijck geopent, en sonderlingh tot de pracktijck gebracht door mr. Hugo Binning ... Vertaelt door Jacobus Koelman ..$b[electronic resource] 210 $aRotterdam $cPieter van Veen, Laren, Abraham van & Brouwning, Mercy$d1678 215 $aOnline resource ([124], 530, [6] p, 12-o) 300 $aReproduction of original in Koninklijke Bibliotheek, Nationale bibliotheek van Nederland. 700 $aBinning$b Hugh$f1627-1653.$0934045 801 0$bUk-CbPIL 801 1$bUk-CbPIL 906 $aBOOK 912 $a9910482304903321 996 $aEttelijcke gronden van de christelijcke religie, klaerlijck geopent, en sonderlingh tot de pracktijck gebracht door mr. Hugo Binning ... Vertaelt door Jacobus Koelman .$92102989 997 $aUNINA