LEADER 03174nam 2200589 450 001 9910480238503321 005 20170822144320.0 010 $a1-4704-0551-2 035 $a(CKB)3360000000465121 035 $a(EBL)3114242 035 $a(SSID)ssj0000888833 035 $a(PQKBManifestationID)11487561 035 $a(PQKBTitleCode)TC0000888833 035 $a(PQKBWorkID)10881855 035 $a(PQKB)10522746 035 $a(MiAaPQ)EBC3114242 035 $a(PPN)195418263 035 $a(EXLCZ)993360000000465121 100 $a20150416h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCohomological invariants $eexceptional groups and spin groups /$fSkip Garibaldi ; with an appendix by Detlev W. Hoffmann 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$d©2009 215 $a1 online resource (102 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 937 300 $a"Volume 200, number 937 (second of 6 numbers)." 311 $a0-8218-4404-0 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""List of Tables""; ""Preface""; ""Part I. Invariants, especially modulo an odd prime""; ""1. Definitions and notations""; ""2. Invariants of I??[sub(n)]""; ""3. Quasi-Galois extensions and invariants of Z/pZ""; ""4. An example: the mod p Bockstein map""; ""5. Restricting invariants""; ""6. Mod p invariants of PGL[sub(p)]""; ""7. Extending invariants""; ""8. Mod 3 invariants of Albert algebras""; ""Part II. Surjectivities and invariants of E[sub(6)], E[sub(7)], and E[sub(8)]""; ""9. Surjectivities: internal Chevalley modules""; ""10. New invariants from homogeneous forms"" 327 $a""11. Mod 3 invariants of simply connected E[sub(6)]""""12. Surjectivities: the highest root""; ""13. Mod 3 invariants of E[sub(7)]""; ""14. Construction of groups of type E[sub(8)]""; ""15. Mod 5 invariants of E[sub(8)]""; ""Part III. Spin groups""; ""16. Introduction to Part III""; ""17. Surjectivities: Spin[sub(n)] for 7 a??? n a??? 12""; ""18. Invariants of Spin[sub(n)] for 7 a??? n a??? 10""; ""19. Divided squares in the Grothendieck-Witt ring""; ""20. Invariants of Spin[sub(11)] and Spin[sub(12)]""; ""21. Surjectivities: Spin[sub(14)]""; ""22. Invariants of Spin[sub(14)]"" 327 $a""23. Partial summary of results""""Appendices""; ""A. Examples of anisotropic groups of type E[sub(7)]""; ""B. A generalization of the Common Slot Theorem""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 937. 606 $aGalois cohomology 606 $aLinear algebraic groups 606 $aInvariants 608 $aElectronic books. 615 0$aGalois cohomology. 615 0$aLinear algebraic groups. 615 0$aInvariants. 676 $a514/.23 700 $aGaribaldi$b Skip$f1972-$0149814 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480238503321 996 $aCohomological invariants$92269265 997 $aUNINA LEADER 01560nam a22003011i 4500 001 991002030269707536 005 20040127140618.0 008 040407m19611962fr |||||||||||||||||fre 035 $ab12860165-39ule_inst 035 $aARCHE-083978$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 041 1 $afre$alat$hlat 100 0 $aDefensor :$cMonachus$0439983 245 10$aLivre d'étincelles /$cDefensor de Ligugé ; introduction, texte, traduction et notes de H.-M. Rochais 260 $aParis :$bLes éditions du cerf,$c1961-1962 300 $a2 v. ;$c20 cm 440 0$aSources chrétiennes ;$v77; 86 440 0$aSources chrétiennes.$pSérie des textes monastiques d'Occident ;$v7; 9 700 1 $aRochais, Henri 907 $a.b12860165$b02-04-14$c16-04-04 912 $a991002030269707536 945 $aLE007 Sala A Sourc. Chrét. Defensor 01$cv. 1$g1$i2007000112687$lle007$nLE007 2006 Ugenti PRIN$op$pE20.00$q-$rn$s- $t0$u0$v0$w0$x0$y.i14340902$z08-01-07 945 $aLE007 Sala A Sourc. Chrét. Defensor 01$cv. 2$g1$i2007000112762$lle007$nLE007 2006 Ugenti PRIN$op$pE17.80$q-$rn$s- $t0$u0$v0$w0$x0$y.i14341554$z09-01-07 945 $aLE009 Coll. I, 77$g1$i2009000181373$lle009$nV. 1$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13420501$z16-04-04 945 $aLE009 Coll. I, 86$g1$i2009000181342$lle009$nV. 2$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13420513$z16-04-04 996 $aLivre d'etincelles$976198 997 $aUNISALENTO 998 $a(2)le007$a(2)le009$b16-04-04$cm$da $e-$ffre$gfr $h0$i4