LEADER 03687nam 22006375 450 001 9910480130003321 005 20200703005212.0 010 $a1-4612-3220-1 024 7 $a10.1007/978-1-4612-3220-9 035 $a(CKB)3400000000090304 035 $a(SSID)ssj0000931353 035 $a(PQKBManifestationID)11583379 035 $a(PQKBTitleCode)TC0000931353 035 $a(PQKBWorkID)10872136 035 $a(PQKB)11513475 035 $a(DE-He213)978-1-4612-3220-9 035 $a(MiAaPQ)EBC3075951 035 $a(PPN)238031322 035 $a(EXLCZ)993400000000090304 100 $a20121227d1990 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aEnergy Transduction in Biological Membranes$b[electronic resource] $eA Textbook of Bioenergetics /$fedited by William A. Cramer, David B. Knaff 205 $a1st ed. 1990. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1990. 215 $a1 online resource (XIV, 579 p.) 225 1 $aSpringer Advanced Texts in Chemistry,$x0172-6323 300 $a"With 218 illustrations in 351 parts." 311 $a0-387-96761-3 311 $a0-387-97533-0 320 $aIncludes bibliographical references and index. 327 $aI Principles of Bioenergetics -- 1 Thermodynamic Background -- 2 Oxidation-Reduction; Electron and Proton Transfer -- 3 Membrane Structure and Storage of Free Energy -- II Components and Pathways for Electron Transport and H+ Translocation -- 4 Metalloproteins -- 5 The Quinone Connection -- 6 Photosynthesis: Photons to Protons -- 7 Light and Redox-Linked H+ Translocation: Pumps, Cycles, and Stoichiometry -- III Utilization of Electrochemical Ion Gradients -- 8 Transduction of Electrochemical Ion Gradients to ATP Synthesis -- 9 Active Transport -- Appendix I Answers to Problems -- Appendix II Physical, Chemical, and Biochemical Constants -- Appendix III Prediction of Protein Folding in Membranes -- References -- Glossary of Abbreviations. 330 $aEnergy Transduction in Biological Membranes was primarily designed for graduate courses in bioenergetics. Not only does it discuss basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, but also (1) the components and pathways for electron transport and hydrogen ion translocation, and (2) the utilization of electrochemical ion gradients. The book is unique in presenting a comparative treatment of respiratory and photosynthetic energy transduction, and in using protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins. 410 0$aSpringer Advanced Texts in Chemistry,$x0172-6323 606 $aCell biology 606 $aPhysical chemistry 606 $aBiochemistry 606 $aCell Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/L16008 606 $aPhysical Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C21001 606 $aBiochemistry, general$3https://scigraph.springernature.com/ontologies/product-market-codes/L14005 615 0$aCell biology. 615 0$aPhysical chemistry. 615 0$aBiochemistry. 615 14$aCell Biology. 615 24$aPhysical Chemistry. 615 24$aBiochemistry, general. 676 $a571.6 702 $aCramer$b William A$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aKnaff$b David B$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910480130003321 996 $aEnergy Transduction in Biological Membranes$92286765 997 $aUNINA