LEADER 04028nam 2200625 450 001 9910480091103321 005 20180731045131.0 010 $a1-4704-0445-1 035 $a(CKB)3360000000465028 035 $a(EBL)3114236 035 $a(SSID)ssj0000973589 035 $a(PQKBManifestationID)11537983 035 $a(PQKBTitleCode)TC0000973589 035 $a(PQKBWorkID)10958553 035 $a(PQKB)10442231 035 $a(MiAaPQ)EBC3114236 035 $a(PPN)195417321 035 $a(EXLCZ)993360000000465028 100 $a20050920d2006 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem $eheuristics and rigorous verification on a model /$fAmadeu Delshams, Rafael de la Llave, Tere M. Seara 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2006. 215 $a1 online resource (158 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 844 300 $a"January 2006, volume 179, number 844 (third of 5 numbers)." 311 $a0-8218-3824-5 320 $aIncludes bibliographical references (pages 137-141). 327 $a""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold"" 327 $a""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" 327 $a""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" 327 $a""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 844. 606 $aNonholonomic dynamical systems 606 $aMechanics 606 $aDifferential equations$xQualitative theory 608 $aElectronic books. 615 0$aNonholonomic dynamical systems. 615 0$aMechanics. 615 0$aDifferential equations$xQualitative theory. 676 $a510 s 676 $a515/.39 700 $aDelshams$b Amadeu$0919072 702 $aDe la Llave$b Rafael$f1957- 702 $aSeara$b Tere M.$f1961- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480091103321 996 $aA geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem$92061316 997 $aUNINA