LEADER 02496nam 2200613 450 001 9910480024503321 005 20170821170709.0 010 $a1-4704-0659-4 035 $a(CKB)3360000000464436 035 $a(EBL)3113566 035 $a(SSID)ssj0000888855 035 $a(PQKBManifestationID)11478233 035 $a(PQKBTitleCode)TC0000888855 035 $a(PQKBWorkID)10876169 035 $a(PQKB)10150644 035 $a(MiAaPQ)EBC3113566 035 $a(PPN)195411358 035 $a(EXLCZ)993360000000464436 100 $a19810903h19811981 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContinuous geometries with a transition probability /$fJohn von Neumann ; prepared and edited by Israel Halperin 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1981] 210 4$dİ1981 215 $a1 online resource (220 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 252 300 $a"Reproduces a manuscript (third draft) written by John von Neumann in 1937 (the original hand-written manuscript is kept in the J. von Neumann file in the Library of Congress)"--Foreword. 300 $a"Volume 34." 311 $a0-8218-2252-7 327 $a""Table of Contents""; ""Chapter I: The Axioms""; ""Chapter II: Geometrical character of L and the ring R""; ""Chapter III: Unitary transformations""; ""Chapter IV: Definiteness""; ""Chapter V: Real traces""; ""Chapter VI: Real traces and transition probabilities""; ""Chapter VII: Completeness properties. Uniqueness of the real trace. The center""; ""Chapter VIII: The operatorial description in a unitary space""; ""Chapter IX: Construction of all systems L"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 252. 606 $aProbabilities 606 $aContinuous geometries 606 $aVon Neumann algebras 606 $aQuantum theory 608 $aElectronic books. 615 0$aProbabilities. 615 0$aContinuous geometries. 615 0$aVon Neumann algebras. 615 0$aQuantum theory. 676 $a510 s 676 $a511.3/3 700 $aVon Neumann$b John$f1903-1957,$012895 702 $aHalperin$b Israel$f1911- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480024503321 996 $aContinuous geometries with a transition probability$91945785 997 $aUNINA