LEADER 01333nam2-2200409li-450 001 990000179770203316 005 20180312154755.0 010 $a3-540-13781-5 035 $a0017977 035 $aUSA010017977 035 $a(ALEPH)000017977USA01 035 $a0017977 100 $a20001109d1985----km-y0itay0103----ba 101 0 $aeng 102 $aGW 200 1 $aCationic ring-opening polymerization$esynthetic applications$fby S. Penczek, P. Kubisa, and K. Matyjaszewski$gpreface by J. P. Kennedy 210 $aBerlin [etc.]$cSpringer-Verlag$dcopyr. 1985 215 $aXVIII, 317 p.$c40 ill., ritr. , 71 tab.$d24 cm 225 2 $aAdvances in polymer science$v0 410 0$10010017968$12001$aAdvances in polymer science 610 1 $apolimerizzazione cationica 676 $a54728$9. 700 1$aPenczek,$bS.$0746271 702 1$aKennedy,$bJ. P. 702 1$aKubisa,$bP. 702 1$aMatyjaszewski,$bK. 801 $aSistema bibliotecario di Ateneo dell' Universitą di Salerno$gRICA 912 $a990000179770203316 951 $a547.28 PEN$b0012229 959 $aBK 969 $aSCI 979 $c19900619 979 $c20001110$lUSA01$h1713 979 $c20020403$lUSA01$h1625 979 $aPATRY$b90$c20040406$lUSA01$h1613 996 $aCationic ring-opening polymerization$91489297 997 $aUNISA LEADER 02511nam 2200541 450 001 9910479977503321 005 20170822144131.0 010 $a1-4704-0267-X 035 $a(CKB)3360000000464860 035 $a(EBL)3114467 035 $a(SSID)ssj0000888778 035 $a(PQKBManifestationID)11456884 035 $a(PQKBTitleCode)TC0000888778 035 $a(PQKBWorkID)10867686 035 $a(PQKB)10485618 035 $a(MiAaPQ)EBC3114467 035 $a(PPN)195415604 035 $a(EXLCZ)993360000000464860 100 $a19990720h19991999 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotics for solutions of linear differential equations having turning points with applications /$fS. Strelitz 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1999] 210 4$d©1999 215 $a1 online resource (105 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 676 300 $a"November 1999, volume 142, number 676 (second of 4 numbers)." 311 $a0-8218-1352-8 320 $aIncludes bibliographical references (page 88). 327 $a""Table of Contents""; ""Chapter 1: The Construction of Asymptotics""; ""A?1 Introduction""; ""A?2 Formulation of the main result""; ""A?3 The main auxiliary lemma""; ""A?4 The equation Y[sup(n)] = I?»p[sub(0)]X[sup(I?±Y)]""; ""A?5 Asymptotics in [0, x[sub(0)]""; ""A?6 Asymptotics in [x*, l]""; ""A?7 Proof of Theorem 1""; ""A?8 Completion of the proof of Theorem 1 and of Theorem 2""; ""Chapter 2: Application: Existence and Asymptotics of Eigenvalues""; ""A?1 Introduction""; ""A?2 Boundary problem for a second order equation"" 327 $a""A?3 Boundary problem for a third order equation. Existence of eigenvalues""""A?4 Asymptotics for eigenvalues sequences""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 676. 606 $aDifferential equations, Linear$xAsymptotic theory 608 $aElectronic books. 615 0$aDifferential equations, Linear$xAsymptotic theory. 676 $a510 s 676 $a515/.354 700 $aStrelitz$b S$g(Shlomo),$f1923-$0871718 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910479977503321 996 $aAsymptotics for solutions of linear differential equations having turning points with applications$91945781 997 $aUNINA