LEADER 03406nam 22006735 450 001 9910479876403321 005 20210914135920.0 010 $a1-4471-0589-3 024 7 $a10.1007/978-1-4471-0589-3 035 $a(CKB)3400000000088218 035 $a(SSID)ssj0000808466 035 $a(PQKBManifestationID)11464590 035 $a(PQKBTitleCode)TC0000808466 035 $a(PQKBWorkID)10777810 035 $a(PQKB)10047824 035 $a(DE-He213)978-1-4471-0589-3 035 $a(MiAaPQ)EBC3074332 035 $a(PPN)187456429 035 $a(EXLCZ)993400000000088218 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSets, Logic and Categories$b[electronic resource] /$fby Peter J. Cameron 205 $a1st ed. 1998. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d1998. 215 $a1 online resource (X, 182 p.) 225 1 $aSpringer Undergraduate Mathematics Series,$x1615-2085 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-85233-056-2 320 $aIncludes bibliographical references and index. 327 $a1. Naďve set theory -- 2. Ordinal numbers -- 3. Logic -- 4. First-order logic -- 5. Model theory -- 6. Axiomatic set theory -- 7. Categories -- 8. Where to from here? -- Solutions to selected exercises -- References. 330 $aSet theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material. 410 0$aSpringer Undergraduate Mathematics Series,$x1615-2085 606 $aMathematical logic 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aK-theory 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 615 0$aMathematical logic. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aK-theory. 615 14$aMathematical Logic and Foundations. 615 24$aCategory Theory, Homological Algebra. 615 24$aK-Theory. 676 $a511.3/22 686 $a03-01$2msc 686 $a00A05$2msc 686 $a13-01$2msc 700 $aCameron$b Peter J$4aut$4http://id.loc.gov/vocabulary/relators/aut$040938 906 $aBOOK 912 $a9910479876403321 996 $aSets, logic and categories$91425016 997 $aUNINA LEADER 01418nam 2200421Ka 450 001 9910702978203321 005 20241218123341.0 035 $a(CKB)5450000000411622 035 $a(OCoLC)495812269 035 $a(DcWaBHL)178576 035 $a(EXLCZ)995450000000411622 100 $a20100105d2009 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLarge aspen tortrix 205 $aRev. June 2009. 210 1$a[Washington, D.C.?]$cU.S. Dept. of Agriculture$d1988 215 $a1 online resource (7 pages, 1 unnumbered page) $ccolor illustrations, color map 215 $a1 online resource 225 1 $aForest insect & disease leaflet ;$v139 300 $aTitle from title screen (viewed Jan. 5, 2010). 300 $a"FS-R6-RO-FIDL#139/004-2009"--P. [8]. 320 $aIncludes bibliographical references (page 7). 606 $aAspen$xDiseases and pests$zNorth America 606 $aLarge aspen tortrix$zNorth America 615 0$aAspen$xDiseases and pests 615 0$aLarge aspen tortrix 700 $aCiesla$b William M$079748 701 $aKruse$b James J$g(James John)$01393503 712 02$aUnited States.$bForest Service.$bPacific Northwest Region. 801 0$bGPO 906 $aBOOK 912 $a9910702978203321 996 $aLarge aspen tortrix$93449703 997 $aUNINA