LEADER 02328nam 2200565 450 001 9910479854203321 005 20170918221501.0 010 $a1-4704-0133-9 035 $a(CKB)3360000000464738 035 $a(EBL)3113810 035 $a(SSID)ssj0000889219 035 $a(PQKBManifestationID)11499143 035 $a(PQKBTitleCode)TC0000889219 035 $a(PQKBWorkID)10894879 035 $a(PQKB)10213443 035 $a(MiAaPQ)EBC3113810 035 $a(PPN)195414373 035 $a(EXLCZ)993360000000464738 100 $a20140903h19951995 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSome special properties of the adjunction theory for 3-folds in P? /$fMauro C. Beltrametti, Michael Schneider, Andrew J. Sommese 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1995. 210 4$dİ1995 215 $a1 online resource (79 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 116, Number 554 300 $a"July 1995, Volume 116, Number 554 (first of 4 numbers)." 311 $a0-8218-0234-8 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Introduction""; ""Chapter 0. Background material""; ""Chapter 1. The second reduction for na???folds in P[sup(2n-1)]""; ""Chapter 2. General formulae for threefolds in P[sup(5)]""; ""Chapter 3. Nefness and bigness of K[sub(x)+ 2K""; ""Chapter 4. Ampleness of K[sub(x)+ 2K""; ""Chapter 5. Nefness and bigness of K[sub(x)+ K""; ""Chapter 6. Invariants for threefolds in P[sub(5)] up to degree 12""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 116, Number 554. 606 $aAdjunction theory 606 $aThreefolds (Algebraic geometry) 608 $aElectronic books. 615 0$aAdjunction theory. 615 0$aThreefolds (Algebraic geometry) 676 $a516.3/5 700 $aBeltrametti$b Mauro$f1948-$058418 702 $aSchneider$b Michael$f1942 May 18- 702 $aSommese$b Andrew John 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910479854203321 996 $aSome special properties of the adjunction theory for 3-folds in P?$92258318 997 $aUNINA