LEADER 00864nam0-2200313---450- 001 990008438410403321 005 20061213113941.0 010 $a962-7128-06-6 035 $a000843841 035 $aFED01000843841 035 $a(Aleph)000843841FED01 035 $a000843841 100 $a20061213d1992----km-y0itay50------ba 101 0 $aeng 102 $aHK 105 $aa-------001yy 200 1 $aComposite airframe structures$epractical design information and data 210 $aHong Kong$cConmilit Press$d1992 215 $aXXIV, 664 p.$cill.$d27 cm 610 0 $aMateriali Compositi 676 $a620.118 700 1$aNiu,$bMichael Chun-Yung$0474223 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008438410403321 952 $aA 208$fDINPA 959 $aDINPA 996 $aComposite airframe structures$9727575 997 $aUNINA LEADER 02312nam 2200517 450 001 9910478903103321 005 20211029211005.0 010 $a1-4704-4817-3 035 $a(CKB)4100000007133849 035 $a(MiAaPQ)EBC5571102 035 $a(PPN)231946279 035 $a(Au-PeEL)EBL5571102 035 $a(OCoLC)1064943337 035 $a(EXLCZ)994100000007133849 100 $a20181203d2018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBellman function for extremal problems in BMO II $eevolution /$fPaata Ivanisvili [and three others] 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2018] 210 4$dİ2018 215 $a1 online resource (148 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vNumber 1220 311 $a1-4704-2954-3 320 $aIncludes bibliographical references and index. 327 $aSetting and sketch of proof -- Patterns for Bellman candidates -- Evolution of Bellman candidates -- Optimizers -- Related questions and further development. 330 $aIn a previous study, the authors built the Bellman function for integral functionals on the \mathrm{BMO} space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approach that allows the authors to treat the problem in its natural setting. What is more, these new considerations lighten dynamical aspects of the Bellman function, in particular, the evolution of its picture. 410 0$aMemoirs of the American Mathematical Society ;$vNumber 1220. 606 $aHarmonic analysis 606 $aExtremal problems (Mathematics) 606 $aBounded mean oscillation 608 $aElectronic books. 615 0$aHarmonic analysis. 615 0$aExtremal problems (Mathematics) 615 0$aBounded mean oscillation. 676 $a515/.2433 700 $aIvanisvili$b Paata$f1988-$01042364 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910478903103321 996 $aBellman function for extremal problems in BMO II$92466545 997 $aUNINA