LEADER 02658nam 2200589 450 001 9910478893003321 005 20180731045130.0 010 $a1-4704-0660-8 035 $a(CKB)3360000000464437 035 $a(EBL)3113482 035 $a(SSID)ssj0000973348 035 $a(PQKBManifestationID)11537970 035 $a(PQKBTitleCode)TC0000973348 035 $a(PQKBWorkID)10959875 035 $a(PQKB)11422017 035 $a(MiAaPQ)EBC3113482 035 $a(PPN)195411366 035 $a(EXLCZ)993360000000464437 100 $a19810911h19811981 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContinuous cohomology of the Lie algebra of vector fields /$fToru Tsujishita 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1981] 210 4$dİ1981 215 $a1 online resource (160 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 253 300 $aDescription based upon print version of record. 311 $a0-8218-2253-5 320 $aIncludes bibliographical references. 327 $a""Section 3. Lie algebra cohomology""""3.1. Definitions""; ""3.2. Differential graded modules with Lie algebra actions""; ""3.3. Cohomology of L[sub(0)]""; ""3.4. Weil algebras""; ""Section 4. Frame bundles of manifolds""; ""4.1. Group of formal diffeomorphisms""; ""4.2. Frame bundles""; ""Section 5. Statements of the main results""; ""5.1. The fundamental theorem""; ""5.2. Topological interpretation of H(L[sub(M)], F[sub(M)])""; ""5.3. Compact support coefficients""; ""5.4. Distribution coefficients""; ""5.5. The case of L[sup(c)][sub(M)]""; ""Section 6. Diagonal cohomologies"" 327 $a""6.1. Guillemin-Losik Theorem""""6.2. A strong form of Guillemin-Losik Theorem""; ""6.3. Losik Theorem""; ""6.4. Distribution coefficients""; ""Section 7. Haefliger Theorem""; ""Section 8. Proof of Theorem I""; ""Section 9. Proof of Theorem II""; ""Section 10. Proof of Theorem(1.3.1)""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 253. 606 $aVector fields 606 $aLie algebras 606 $aHomology theory 608 $aElectronic books. 615 0$aVector fields. 615 0$aLie algebras. 615 0$aHomology theory. 676 $a510 s 676 $a512/.55 700 $aTsujishita$b To?ru$f1950-$0904387 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910478893003321 996 $aContinuous cohomology of the Lie algebra of vector fields$92022158 997 $aUNINA