LEADER 02883nam 2200589 450 001 9910478879403321 005 20170822123746.0 010 $a1-4704-0230-0 035 $a(CKB)3360000000464825 035 $a(EBL)3114453 035 $a(SSID)ssj0000888766 035 $a(PQKBManifestationID)11530336 035 $a(PQKBTitleCode)TC0000888766 035 $a(PQKBWorkID)10864679 035 $a(PQKB)11676669 035 $a(MiAaPQ)EBC3114453 035 $a(PPN)195415256 035 $a(EXLCZ)993360000000464825 100 $a19980520h19981998 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies /$fW. Bulla [and three others] 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1998] 210 4$dİ1998 215 $a1 online resource (97 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 641 300 $a"September 1998, volume 135, number 641 (first of 5 numbers)." 311 $a0-8218-0808-7 320 $aIncludes bibliographical references (pages 76-79). 327 $a""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. The Toda Hierarchy, Recursion Relations, and Hyperelliptic Curves""; ""Chapter 3. The Stationary Baker-Akhiezer Function""; ""Chapter 4. Spectral Theory for Finite-Gap Jacobi Operators""; ""Chapter 5. Quasi-Periodic Finite-Gap Solutions of the Stationary Toda Hierarchy""; ""Chapter 6. Quasi-Periodic Finite-Gap Solutions of the Toda Hierarchy and the Time-Dependent Baker-Akhiezer Function""; ""Chapter 7. The Kac-van Moerbeke Hierarchy and its Relation to the Toda Hierarchy"" 327 $a""Chapter 8. Spectral Theory for Finite-Gap Dirac-Type Difference Operators""""Chapter 9. Quasi-Periodic Finite-Gap Solutions of the Kac-van Moerbeke Hierarchy""; ""Appendix A. Hyperelliptic Curves of the Toda-Type and Theta Functions""; ""Appendix B. Periodic Jacobi Operators""; ""Appendix C. Examples, g = 0,1""; ""Acknowledgments""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 641. 606 $aEvolution equations, Nonlinear$xNumerical solutions 606 $aGeometry, Algebraic 606 $aMathematical physics 608 $aElectronic books. 615 0$aEvolution equations, Nonlinear$xNumerical solutions. 615 0$aGeometry, Algebraic. 615 0$aMathematical physics. 676 $a510 s 676 $a515/.353 700 $aBulla$b W$g(Wolfgang),$f1942-$0947244 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910478879403321 996 $aAlgebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies$92140208 997 $aUNINA