LEADER 13299nam 22005533a 450 001 9910476950503321 005 20211214195605.0 024 8 $ahttps://doi.org/10.2166/9781780409122 035 $a(CKB)5470000000566794 035 $a(ScCtBLL)43c0bd11-1a90-42b4-a6fd-0d71a97db70f 035 $a(MiAaPQ)EBC6978119 035 $a(Au-PeEL)EBL6978119 035 $a(OCoLC)1259547420 035 $a(EXLCZ)995470000000566794 100 $a20211214i20212021 uu 101 0 $aeng 135 $auru|||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aMethods for Faecal Sludge Analysis$fKonstantina Velkushanova, Damir Brdjanovic, Thammarat Koottatep, Linda Strande, Chris Buckley, Mariska Ronteltap 205 $a1st ed. 210 1$a[s.l.] :$cIWA Publishing,$d2021. 215 $a1 online resource (438 p.) 311 $a1-78040-912-5 327 $aIntro -- Cover -- Table of contents -- 1. Setting the stage -- 1.1 CITY-WIDE INCLUSIVE SANITATION -- 1.2 WHAT IS FAECAL SLUDGE? -- 1.3 TOWARDS STANDARDISATION OF METHODS FOR FAECAL SLUDGE ANALYSIS -- 1.4 INTEGRATED APPROACH TO DATA COLLECTION -- 1.5 ADDITIONAL RESOURCES -- REFERENCES -- 2. Faecal sludge properties and considerations for characterisation -- 2.1 INTRODUCTION -- 2.2 TYPES OF FAECAL SLUDGE -- 2.3 FACTORS INFLUENCING THE FAECAL SLUDGE CHARACTERISTICS ALONG THE SANITATION SERVICE CHAIN -- 2.3.1 Inputs to faecal sludge production -- 2.3.1.1 Excreta -- 2.3.1.2 Water inputs -- 2.3.1.3 Anal cleansing materials -- 2.3.1.4 Additional inputs -- 2.3.2 Factors affecting characteristics of accumulated faecal sludge -- 2.3.2.1 Technical factors -- 2.3.2.2 Demographic factors -- 2.3.2.3 Environmental factors -- 2.3.2.4 Variability of accumulated faecal sludge -- 2.3.2.5 Developments and innovations in onsite containment -- 2.3.3 Emptying and transport -- 2.3.3.1 Storage time or emptying frequency -- 2.3.3.2 Manual or mechanical emptying -- 2.3.3.3 Transportation -- 2.3.3.4 Innovations in faecal sludge emptying and transportation -- 2.3.4 Treatment and end use -- 2.3.4.1 Faecal sludge treatment plants -- 2.3.4.2 End use or disposal -- 2.3.4.3 Innovations in treatment and end use -- 2.3.4.4 Container-based sanitation (CBS) -- 2.3.4.5 Summary of technologies along the sanitation service chain -- 2.4 PROPERTIES OF FAECAL SLUDGE AND SELECTING METHODS OF CHARACTERISATION -- 2.4.1 Faecal sludge properties -- 2.4.1.1 Chemical and physico-chemical properties -- 2.4.1.2 Physical properties -- 2.4.1.3 Biological properties -- 2.4.2 Selection of appropriate methods for characterisation -- 2.5 SETTING UP LABORATORIES FOR FAECAL SLUDGE ANALYSIS -- 2.5.1 Faecal sludge laboratory workflow -- 2.5.2 Health and safety practices -- 2.5.3 Laboratory management systems. 327 $a2.5.4 Case studies of global faecal sludge laboratories -- 2.5.5 Global Partnership of Laboratories for Faecal Sludge Analysis (GPLFSA) -- 2.6 OUTLOOK -- REFERENCES -- 3. Faecal sludge sample collection and handling -- 3.1 INTRODUCTION -- 3.2 SAMPLING OBJECTIVE -- 3.2.1 Containment -- 3.2.2 Collection and transport -- 3.2.3 Treatment -- 3.2.4 End use -- 3.3 REPRESENTATIVENESS -- 3.4 SAMPLING TECHNIQUES -- 3.4.1 Grab sampling -- 3.4.2 Composite sampling -- 3.5 SAMPLING AND MEASURING DEVICES -- 3.5.1 L-stick sludge and scum measuring device -- 3.5.2 Core sampling device -- 3.5.3 Vacuum sludge sampling device -- 3.5.4 Cone-shaped sampling device -- 3.5.5 Grab sampling device - horizontal -- 3.5.6 Grab sampling beaker device - vertical -- 3.5.7 Automatic composite sampler -- 3.5.8 Distance laser measuring device -- 3.5.9 Portable penetrometer -- 3.6 SAMPLING METHODS AND LOCATION -- 3.6.1 Sampling in situ from onsite containment technologies -- 3.6.2 Sampling during emptying of onsite containment technologies -- 3.6.3 Sampling at faecal sludge treatment plants -- 3.7 SAMPLE SIZE -- 3.8 HEALTH AND SAFETY -- 3.9 SAMPLE COLLECTION -- 3.10 RECORDING OF SAMPLE COLLECTION -- 3.11 TRANSPORT -- 3.12 STORAGE AND PRESERVATION -- 3.13 EXAMPLE OF SAMPLING KIT -- 3.14 OUTLOOK -- REFERENCES -- 4. Experimental design for the development, transfer, scaling-up, and optimisation of treatment technologies: case studies of dewatering and drying -- 4.1 INTRODUCTION -- 4.2 EXPERIMENTATION IN FAECAL SLUDGE MANAGEMENT -- 4.2.1 Scales of experiments -- 4.2.2 Designing an experiment -- 4.3 TRANSFERRING TECHNOLOGY: CONDITIONING TO IMPROVE DEWATERING -- 4.3.1 Introduction to faecal sludge dewatering with conditioners -- 4.3.2 Types and mechanisms of conditioners -- 4.3.3 Key parameters for selection of conditioners and optimal dose -- 4.3.4 Laboratory- and pilot-scale testing. 327 $a4.3.5 Case studies - conditioning for improved dewatering -- 4.4 TRANSFERRING TECHNOLOGY: THERMAL DRYING FOR RESOURCE RECOVERY OF DRIED SLUDGE FOR ENERGY -- 4.4.1 Introduction to resource recovery of faecal sludge as solid fuel -- 4.4.2 Introduction to faecal sludge drying -- 4.4.3 Types and mechanisms of thermal drying (technical background) -- 4.4.4 Key parameters when implementing thermal-drying technologies -- 4.4.5 Laboratory-scale and pilot-scale testing -- 4.4.6 Case studies - thermal drying for energy recovery -- 4.5 TRANSFERRING TECHNOLOGY: MICROWAVE DRYING FOR RESOURCE RECOVERY OF DRIED SLUDGE FOR ENERGY -- 4.5 OUTLOOK -- REFERENCES -- 5. Estimating quantities and qualities (Q& -- Q) of faecal sludge at community to city-wide scales -- 5.1 INTRODUCTION -- 5.2 BACKGROUND -- 5.2.1 Scenario projections for planning and management -- 5.2.2 Mass balance: quantifying loadings of faecal sludge -- 5.2.2.1 Production of excreta and faecal sludge -- 5.2.2.2 Accumulation of faecal sludge -- 5.2.2.3 Fate of faecal sludge -- 5.3 STEPS FOR IMPLEMENTATION -- 5.4 FURTHER RESEARCH AND ANALYTICAL POSSIBILITIES -- 5.4.1 Remote sensing -- 5.4.2 Additional spatial analysis -- 5.4.3 Interrelationships between sludge characteristics -- 5.4.4 Evaluating categories of data to evaluate separately -- 5.4.5 Predictive models -- 5.5 OUTLOOK -- REFERENCES -- 6. Towards city-wide inclusive sanitation (CWIS) modelling: modelling of faecal sludge containment/treatment processes -- 6.1 BACKGROUND -- 6.2 INTRODUCTION TO MODELLING - LEARNING FROM ACTIVATED SLUDGE MODELS -- 6.2.1 What is a model? -- 6.2.2 Modelling basics -- 6.2.2.1 Model building -- 6.2.2.2 General activated sludge model set-up -- 6.2.2.3 The matrix notation -- 6.2.2.4 Wastewater treatment models -- 6.2.2.5 Modelling protocols -- 6.3 TOWARDS AN ONSITE SANITATION MODELLING FRAMEWORK. 327 $a6.3.1 Onsite sanitation modelling: formulation of objectives -- 6.3.2 Onsite sanitation modelling: process description -- 6.3.2.1 Portable toilets -- 6.3.2.2 Single pit latrines -- 6.3.2.3 Septic tanks -- 6.3.3 Onsite sanitation modelling: data collection and verification -- 6.3.4 Onsite sanitation modelling: model structure -- 6.3.4.1 Model structure of commonly used onsite sanitation systems -- 6.3.4.2 Model structures of other sanitation systems -- 6.3.5 Onsite sanitation modelling: characterisation of flows -- 6.3.6 Onsite sanitation modelling: calibration and validation -- 6.3.7 Onsite sanitation modelling: detailed characterisation -- 6.3.7.1 Faecal sludge characterisation and fractionation -- 6.3.7.2 Inhibition and toxicity -- 6.3.7.3 Pathogen inactivation -- 6.3.8 Modelling applications, benefits and challenges -- 6.4 OUTLOOK -- REFERENCES -- 7. Faecal sludge simulants: review of synthetic human faeces and faecal sludge for sanitation and wastewater research -- 7.1 INTRODUCTION -- 7.2 CHARACTERISTICS OF FAECES AND FAECAL SLUDGE -- 7.2.1 Faeces -- 7.2.2 Faecal sludge -- 7.3 SYNTHETIC FAECES AND FAECAL SLUDGE FOUND IN THE LITERATURE -- 7.3.1 Physical parameters -- 7.3.1.1 Faeces simulants -- 7.3.1.2 Faecal sludge simulants -- 7.3.2 Chemical, biological, and thermal parameters -- 7.3.2.1 Faeces simulants -- 7.3.2.2 Faecal sludge simulants -- 7.4 DISCUSSION -- 7.4.1 Development of a new simulant -- 7.4.1.1 Synthetic faeces -- 7.4.1.2 Synthetic faecal sludge -- 7.5 CONCLUSIONS -- REFERENCES -- 8. Laboratory procedures and methods for characterisation of faecal sludge -- 8.1 INTRODUCTION -- 8.2 HEALTH AND SAFETY (H& -- S) -- 8.2.1 Monitoring and responsibilities -- 8.2.2 Standard operating procedures (SOPs) -- 8.2.3 Handling of faecal sludge -- 8.2.3.1 Personal protective equipment -- 8.2.3.2 Vaccinations / inoculations. 327 $a8.2.3.3 'Clean' and 'dirty' work areas -- 8.2.3.4 Sampling -- 8.3 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) -- 8.3.1 Training -- 8.3.2 Standard operating procedures -- 8.3.3 Laboratory facilities -- 8.3.4 Sample chain of command -- 8.3.4.1 Laboratory photographs and notebooks -- 8.3.4.2 Equipment maintenance and calibration -- 8.3.4.3 Reporting of results -- 8.3.4.4 Checking compliance -- 8.3.5 Quality control -- 8.4 SELECTION OF THE APPROPRIATE METHOD FOR THE PURPOSE OF CHARACTERISATION -- 8.4.1 Faecal sludge storage and preservation -- 8.4.2 Faecal sludge sample preparation for analysis -- 8.2.4.1 Homogenisation of samples -- 8.2.4.2 Dilution of samples -- 8.2.4.3 Filtration -- 8.2.4.4 Centrifugation -- 8.4.3 Sample and chemical disposal -- 8.5 SHIPPING AND RECEIVING OF FAECAL SLUDGE SAMPLES AND EQUIPMENT -- 8.6 CHEMICAL AND PHYSICO-CHEMICAL PROPERTIES -- 8.6.1 Solids and moisture content -- 8.6.1.1 Total solids and moisture content - volumetric and gravimetric methods by oven drying3 -- 8.6.1.1.1 Introduction -- 8.6.1.1.2 Safety precautions -- 8.6.1.1.3 Apparatus and instruments -- 8.6.1.1.4 Quality control -- 8.6.1.1.5 Sample preservation -- 8.6.1.1.6 Sample preparation -- 8.6.1.1.7 Analysis protocol -- 8.6.1.1.8 Calculation -- 8.6.1.1.9 Data set example -- 8.6.1.2 Volatile and fixed solids - ignition method5 -- 8.6.1.2.1 Introduction -- 8.6.1.2.2 Safety precautions -- 8.6.1.2.3 Apparatus and instruments -- 8.6.1.2.4 Quality control -- 8.6.1.2.5 Sample preservation -- 8.6.1.2.6 Sample preparation -- 8.6.1.2.7 Analysis protocol -- 8.6.1.2.8 Calculation -- 8.6.1.2.9 Data set example -- 8.6.1.3 Total suspended solids and total dissolved solids - oven drying method6 -- 8.6.1.3.1 Introduction -- 8.6.1.3.2 Safety precaution -- 8.6.1.3.3 Apparatus and instruments -- 8.6.1.3.4 Quality control -- 8.6.1.3.5 Sample preservation. 327 $a8.6.1.3.6 Sample preparation. 330 $aFaecal sludge management is recognized globally as an essential component of city-wide inclusive sanitation. However, a major gap in developing appropriate and adequate management and monitoring for faecal sludge is the ability to understand and predict the characteristics and volumes of accumulated faecal sludge, and correlations to source populations. Since standard methods for sampling and analysing faecal sludge do not currently exist, results are not comparable, the actual variability is not yet fully understood, and the transfer of knowledge and data between different regions and institutions can be challenging and often arbitrary. Due to this lack of standard analytical methods for faecal sludge, methods from other fields, such as wastewater management, and soil and food science are frequently applied. However, these methods are not necessarily the most suitable for faecal sludge analysis, and have not been specifically adapted for this purpose. Characteristics of faecal sludge can be different than these other matrices by orders of magnitude. There is also a lack of standard methods for sampling, which is complicated by the difficult nature of in situ sampling, the wide range of onsite sanitation technologies and potential sampling locations, and the diverse heterogeneity of faecal sludge within onsite containments and within cities. This illustrates the urgent need to establish common methods and procedures for faecal sludge characterisation, quantification, sampling, and modelling. The aim of this book is to provide a basis for standardised methods for the analysis of faecal sludge from onsite sanitation technologies, for improved communication between sanitation practitioners, and for greater confidence in the generated data. The book presents background information on types of faecal sludge, methods for sample collection, health and safety procedures for handling, case studies of experimental design, an approach for estimating faecal sludge at community to city-wide scales, modelling containment and treatment processes, recipes for simulants, and laboratory methods for faecal sludge analysis currently in use by faecal sludge laboratories. This book will be beneficial for researchers, laboratory technicians, academics, students and sanitation practitioners. 606 $aTechnology & Engineering / Environmental / Waste Management$2bisacsh 606 $aTechnology 615 7$aTechnology & Engineering / Environmental / Waste Management 615 0$aTechnology 676 $a628.364 702 $aVelkushanova$b Konstantina 702 $aBrdjanovic$b Damir 702 $aKoottatep$b Thammarat 702 $aStrande$b Linda 702 $aBuckley$b Chris 702 $aRonteltap$b Mariska 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910476950503321 996 $aMethods for Faecal Sludge Analysis$92102381 997 $aUNINA