LEADER 01704nam 2200433z- 450 001 9910476900503321 005 20210528 010 $a1000104538 035 $a(CKB)5470000000567018 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/70074 035 $a(oapen)doab70074 035 $a(EXLCZ)995470000000567018 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aRoad Condition Estimation with Data Mining Methods using Vehicle Based Sensors 210 $aKarlsruhe$cKIT Scientific Publishing$d2021 215 $a1 online resource (234 p.) 225 1 $aKarlsruher Schriftenreihe Fahrzeugsystemtechnik 311 08$a3-7315-1004-9 330 $aThe work provides novel methods to process inertial sensor and acoustic sensor data for road condition estimation and monitoring with application in vehicles, which serve as sensor platforms. Furthermore, methods are introduced to combine the results from various vehicles for a more reliable estimation. 606 $aMechanical engineering & materials$2bicssc 610 $aFahrzeugsensorik 610 $aFahrzeugtechnik 610 $aMaschine Learning 610 $aMaschinelles Lernen 610 $aRoad Condition 610 $aStraßenscha?den 610 $aVehicle Sensors 610 $aVehicle Technology 615 7$aMechanical engineering & materials 700 $aMasino$b Johannes$4auth$01319299 906 $aBOOK 912 $a9910476900503321 996 $aRoad Condition Estimation with Data Mining Methods using Vehicle Based Sensors$93033730 997 $aUNINA