LEADER 06546nam 2200625 450 001 9910467487403321 005 20200520144314.0 010 $a1-119-50764-2 010 $a1-119-50761-8 024 7 $a10.1002/9781119507642 035 $a(CKB)4100000007461740 035 $a(MiAaPQ)EBC5630668 035 $a(CaSebORM)9781119507635 035 $a(Au-PeEL)EBL5630668 035 $a(OCoLC)1081315450 035 $a(CaBNVSL)mat08796328 035 $a(IDAMS)0b000064896d8939 035 $a(IEEE)8796328 035 $a(EXLCZ)994100000007461740 100 $a20190827d2008 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDynamic system reliability $emodelling and analysis of dynamic and dependent behaviors /$fLiudong Xing, Gregory Levitin, Chaonan Wang 205 $a1st edition 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d2019. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2019] 215 $a1 online resource (236 pages) $cillustrations 225 1 $aWiley series in quality and reliability engineering 311 $a1-119-50763-4 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Foreword; Preface; Nomenclature; Chapter 1 Introduction; References; Chapter 2 Fundamental Reliability Theory; 2.1 Basic Probability Concepts; 2.1.1 Axioms of Probability; 2.1.2 Conditional Probability; 2.1.3 Total Probability Law; 2.1.4 Bayes' Theorem; 2.1.5 Random Variables; 2.2 Reliability Measures; 2.2.1 Time to Failure; 2.2.2 Failure Function; 2.2.3 Reliability Function; 2.2.4 Failure Rate; 2.2.5 Mean Time to Failure; 2.2.6 Mean Residual Life; 2.3 Fault Tree Modeling; 2.3.1 Static Fault Tree; 2.3.2 Dynamic Fault Tree 327 $a2.3.3 Phased-Mission Fault Tree2.3.4 Multi-State Fault Tree; 2.4 Binary Decision Diagram; 2.4.1 Basic Concept; 2.4.2 ROBDD Generation; 2.4.3 ROBDD Evaluation; 2.4.4 Illustrative Example; 2.5 Markov Process; 2.6 Reliability Software; References; Chapter 3 Imperfect Fault Coverage; 3.1 Different Types of IPC; 3.2 ELC Modeling; 3.3 Binary-State System; 3.3.1 BDD Expansion Method; 3.3.2 Simple and Efficient Algorithm; 3.4 Multi-State System; 3.4.1 MMDD-Based Method for MSS Analysis; 3.4.2 Illustrative Example; 3.5 Phased-Mission System; 3.5.1 Mini-Component Concept; 3.5.2 PMS SEA 327 $a3.5.3 PMS BDD Method3.5.4 Summary of PMS SEA; 3.5.5 Illustrative Example; 3.6 Summary; References; Chapter 4 Modular Imperfect Coverage; 4.1 Modular Imperfect Coverage Model; 4.2 Nonrepairable Hierarchical System; 4.3 Repairable Hierarchical System; 4.4 Summary; References; Chapter 5 Functional Dependence; 5.1 Logic OR Replacement Method; 5.2 Combinatorial Algorithm; 5.2.1 Task 1: Addressing UFs of Independent Trigger Components; 5.2.2 Task 2: Generating Reduced Problems Without FDEP; 5.2.3 Task 3: Solving Reduced Reliability Problems; 5.2.3.1 Expansion Process 327 $a5.7 SummaryReferences; Chapter 6 Deterministic Common-Cause Failure; 6.1 Explicit Method; 6.1.1 Two-Step Method; 6.1.2 Illustrative Example; 6.2 Efficient Decomposition and Aggregation Approach; 6.2.1 Three-Step Method; 6.2.2 Illustrative Example; 6.3 Decision Diagram-Based Aggregation Method; 6.3.1 Three-Step Method; 6.3.2 Illustrative Example; 6.4 Universal Generating Function-Based Method; 6.4.1 System Model; 6.4.2 u-Function Method for Series-Parallel Systems; 6.4.3 u-Function Method for CCFs; 6.4.4 Illustrative Example; 6.5 Summary; References 330 $aOffers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies.-The first book systematically focusing on dynamic system reliability modelling and analysis theory -Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing -Includes abundant illustrative examples and case studies based on real-world systems -Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis -Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines. 410 0$aWiley series in quality and reliability engineering. 606 $aReliability (Engineering) 606 $aSystem analysis 608 $aElectronic books. 615 0$aReliability (Engineering) 615 0$aSystem analysis. 676 $a620.00452 700 $aXing$b Liudong$0891569 702 $aLevitin$b Gregory 702 $aWang$b Chaonan$f1986- 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910467487403321 996 $aDynamic system reliability$91991350 997 $aUNINA