LEADER 02826nam 2200577 450 001 9910467312103321 005 20200520144314.0 010 $a1-60650-867-9 035 $a(CKB)4330000000017416 035 $a(OCoLC)939718503 035 $a(CaBNvSL)swl00405901 035 $a(MiAaPQ)EBC4389025 035 $a(Au-PeEL)EBL4389025 035 $a(CaPaEBR)ebr11152412 035 $a(CaONFJC)MIL832656 035 $a(OCoLC)939262334 035 $a(EXLCZ)994330000000017416 100 $a20151209d2016 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aIntermediate calculus $einfinite series /$fTunc Geveci 210 1$aNew York, [New York] (222 East 46th Street, New York, NY 10017) :$cMomentum Press,$d2016. 215 $a1 online resource (iv, 146 pages) $cillustrations 300 $aCo-published with Cognella Academic Publishing. 300 $aIncludes index. 327 $a1. Approximation of arbitrary functions using Taylor polynomials -- Taylor polynomials based at 0 -- Taylor polynomials based at an arbitrary point -- 327 $a2. Error in approximation using Taylor polynomials -- The error in the approximation by a Taylor polynomial -- The limit as the order of Taylor polynomial increases -- 327 $a3. Introduction to the infinite series -- 327 $a4. Tests for absolute convergence -- The monotone convergence principle and absolute -- Convergence -- The ratio test -- The root test -- The proofs of the ratio test and the root test -- 327 $a5. An introduction to power series -- The definitions -- Convergence properties of a power series -- Differentiation of functions defined by power series -- 327 $a6. Using termwise integration, multiplication and division to determine Taylor series -- Termwise integration of power series -- Arithmetic operations on Taylor series -- The binomial series -- 327 $a7. Testing for absolute convergence with the integral and comparison tests -- The integral test -- Error estimates related to the integral test -- Comparison tests -- 327 $a8. Using conditional convergence to determine alternating series -- Alternating series -- 327 $a9. An introduction to the Fourier series -- Fourier series of 2[pi]-periodic functions -- Fourier series when the period is different from 2[pi] -- 327 $aIndex. 606 $aCalculus 606 $aSeries, Infinite 608 $aLibros electronicos. 615 0$aCalculus. 615 0$aSeries, Infinite. 676 $a515 700 $aGeveci$b Tunc.$0755794 801 0$bFINmELB 801 1$bFINmELB 906 $aBOOK 912 $a9910467312103321 996 $aIntermediate calculus$92042128 997 $aUNINA