LEADER 01616nam0-2200481---450- 001 990001102870203316 005 20090626090145.0 010 $a88-348-1163-1 035 $a000110287 035 $aUSA01000110287 035 $a(ALEPH)000110287USA01 035 $a000110287 100 $a20021115d2001----km|y1itay0103----ba 101 0 $aita 102 $aIT 105 $aa|||||||001yy 200 1 $aLezioni di matematica finanziaria, classica e moderna$fFabrizio Cacciafesta 205 $a4. ed. riv. ed ampliata 210 $aTorino$cG. Giappichelli$dcopyr.2001 215 $aXIII, 429 p.$d24 cm 700 1$aCACCIAFESTA,$bFabrizio$0479284 912 $a990001102870203316 951 $a332 CAC 3 (TESTI 1075 B)$b10734 E.C.$cTESTI 1075$d00098268 951 $aTESTI 1075 B$b10736 E.C.$cTESTI 1075$d00098270 951 $a332 CAC 3a (TESTI 1075 B)$b10735 E.C.$cTESTI 1075$d00098269 951 $a300 332.0151 CAC$b10327 DISES 959 $aBK 969 $aGIU 969 $aDISES 979 $aMARIA$b10$c20021115$lUSA01$h1058 979 $aJOHNNY$b90$c20021127$lUSA01$h1641 979 $aPAOLA$b90$c20030210$lUSA01$h1020 979 $aPAOLA$b90$c20030210$lUSA01$h1025 979 $aPAOLA$b90$c20030210$lUSA01$h1026 979 $aPATRY$b90$c20040406$lUSA01$h1716 979 $aRSIAV5$b90$c20090626$lUSA01$h0859 979 $aRSIAV5$b90$c20090626$lUSA01$h0901 979 $c20121027$lUSA01$h1547 979 $c20121027$lUSA01$h1601 979 $c20121027$lUSA01$h1610 996 $aLezioni di matematica finanziaria, classica e moderna$9977677 997 $aUNISA DEB $aUSA11048 LEADER 02875nam 2200649 450 001 9910466585903321 005 20200121113828.0 010 $a3-11-052669-7 010 $a3-11-052749-9 024 7 $a10.1515/9783110527490 035 $a(CKB)4100000006999676 035 $a(MiAaPQ)EBC5157139 035 $a(DE-B1597)474808 035 $a(OCoLC)1059274505 035 $a(DE-B1597)9783110527490 035 $a(Au-PeEL)EBL5157139 035 $a(OCoLC)1065429883 035 $a(EXLCZ)994100000006999676 100 $a20200121d2018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aInvariant differential operators$hVolume 3$iSupersymmetry /$fVladimir K. Dobrev 205 $aFirst edition. 210 1$aBerlin, Germany ;$aBoston :$cDe Gruyter,$d[2018] 210 4$dİ2018 215 $a1 online resource (228 pages) $cillustrations 225 1 $aDe Gruyter studies in mathematical physics ;$vVolume 49 311 $a3-11-052663-8 320 $aIncludes bibliographical references and index. 327 $aLie algebras and groups -- Real semisimple Lie algebras -- Invariant differential operators -- Case of the anti-de sitter group -- Conformal case in 4D -- Kazhdan/Lusztig polynomials, subsingular vectors, and conditionally invariant equations -- Invariant differential operators for noncompact Lie algebras parabolically related to conformal Lie algebras -- Multilinear invariant differential operators from new generalized verma modules. 330 $aWith applications in quantum field theory, general relativity and elementary particle physics, this four-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This third volume covers supersymmetry, including detailed coverage of conformal supersymmetry in four and some higher dimensions, furthermore quantum superalgebras are also considered. Contents Lie superalgebras Conformal supersymmetry in 4D Examples of conformal supersymmetry for D ? 4 Quantum superalgebras 410 0$aDe Gruyter studies in mathematical physics ;$vVolume 49. 606 $aLie algebras 606 $aLie groups 606 $aDifferential invariants 606 $aDifferential operators 606 $aQuantum groups 606 $aSuperalgebras 608 $aElectronic books. 615 0$aLie algebras. 615 0$aLie groups. 615 0$aDifferential invariants. 615 0$aDifferential operators. 615 0$aQuantum groups. 615 0$aSuperalgebras. 676 $a512.482 700 $aDobrev$b V. K.$0468747 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910466585903321 996 $aInvariant differential operators$92463851 997 $aUNINA