LEADER 00898nam0-22003251i-450- 001 990001723690403321 005 20101214204131.0 035 $a000172369 035 $aFED01000172369 035 $a(Aleph)000172369FED01 035 $a000172369 100 $a20030910d1985----km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $aSchede conoscitive delle zone umide di Ravenna$fWorld Wildlife Fund-Ravenna 205 $a2. ed. 210 $aLugo$cUniversitą Popolare di Romagna$d1985 215 $a24 schede$d25 cm 610 0 $aRavenna 610 0 $aFauna 610 0 $aFlora 676 $a581.9 710 02$aWWF.$bSezione di Ravenna$0437249 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001723690403321 952 $a60 581.9 B 34$b318$fFAGBC 959 $aFAGBC 996 $aSchede conoscitive delle zone umide di Ravenna$9360507 997 $aUNINA LEADER 02718nam 2200589 450 001 9910466432803321 005 20200520144314.0 010 $a3-11-042911-X 024 7 $a10.1515/9783110438222 035 $a(CKB)3710000000865117 035 $a(MiAaPQ)EBC4691415 035 $a(DE-B1597)452446 035 $a(OCoLC)959150132 035 $a(OCoLC)960014013 035 $a(DE-B1597)9783110438222 035 $a(Au-PeEL)EBL4691415 035 $a(CaPaEBR)ebr11268045 035 $a(CaONFJC)MIL956109 035 $a(EXLCZ)993710000000865117 100 $a20161010h20162016 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aAdvanced calculus $edifferential calculus and Stokes' theorem /$fPietro-Luciano Buono 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2016. 210 4$d©2016 215 $a1 online resource (314 pages) $cillustrations 225 1 $aDe Gruyter Graduate 311 $a3-11-043822-4 311 $a3-11-043821-6 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tPreface -- $t1. Introduction -- $t2. Calculus of Vector Functions -- $t3. Tangent Spaces and 1-forms -- $t4. Line Integrals -- $t5. Differential Calculus of Mappings -- $t6. Applications of Differential Calculus -- $t7. Double and Triple Integrals -- $t8. Wedge Products and Exterior Derivatives -- $t9. Integration of Forms -- $t10. Stokes' Theorem and Applications -- $tBibliography -- $tIndex 330 $aThis textbook offers a high-level introduction to multi-variable differential calculus. Differential forms are introduced incrementally in the narrative, eventually leading to a unified treatment of Green's, Stokes' and Gauss' theorems. Furthermore, the presentation offers a natural route to differential geometry. Contents:Calculus of Vector FunctionsTangent Spaces and 1-formsLine IntegralsDifferential Calculus of MappingsApplications of Differential CalculusDouble and Triple IntegralsWedge Products and Exterior DerivativesIntegration of FormsStokes' Theorem and Applications 410 0$aDe Gruyter graduate. 606 $aDifferential calculus 606 $aMathematical analysis 606 $aStokes' theorem 608 $aElectronic books. 615 0$aDifferential calculus. 615 0$aMathematical analysis. 615 0$aStokes' theorem. 676 $a515/.33 700 $aBuono$b Pietro-Luciano$01033729 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910466432803321 996 $aAdvanced calculus$92452422 997 $aUNINA