LEADER 04014nam 2200697 a 450 001 9910465550403321 005 20200520144314.0 010 $a3-11-025816-1 024 7 $a10.1515/9783110258165 035 $a(CKB)2560000000079418 035 $a(EBL)835465 035 $a(OCoLC)772845223 035 $a(SSID)ssj0000591852 035 $a(PQKBManifestationID)11336347 035 $a(PQKBTitleCode)TC0000591852 035 $a(PQKBWorkID)10727462 035 $a(PQKB)10233833 035 $a(MiAaPQ)EBC835465 035 $a(DE-B1597)124080 035 $a(OCoLC)979584734 035 $a(DE-B1597)9783110258165 035 $a(PPN)175588007 035 $a(Au-PeEL)EBL835465 035 $a(CaPaEBR)ebr10527867 035 $a(CaONFJC)MIL628121 035 $a(EXLCZ)992560000000079418 100 $a20110926d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStochastic models for fractional calculus$b[electronic resource] /$fMark M. Meerschaert, Alla Sikorskii 210 $aBerlin ;$aBoston $cDe Gruyter$dc2012 215 $a1 online resource (304 p.) 225 1 $aDe Gruyter studies in mathematics,$x0179-0986 ;$v43 300 $aDescription based upon print version of record. 311 $a1-306-96870-4 311 $a3-11-025869-2 320 $aIncludes bibliographical references and index. 327 $t Frontmatter -- $tPreface / $rMeerschaert, Mark M. / Sikorskii, Alla -- $tAcknowledgments -- $tContents -- $tChapter 1. Introduction -- $tChapter 2. Fractional Derivatives -- $tChapter 3. Stable Limit Distributions -- $tChapter 4. Continuous Time Random Walks -- $tChapter 5. Computations in R -- $tChapter 6. Vector Fractional Diffusion -- $tChapter 7. Applications and Extensions -- $tBibliography -- $tIndex 330 $aFractional calculus is a rapidly growing field of research, at the interface between probability, differential equations, and mathematical physics. It is used to model anomalous diffusion, in which a cloud of particles spreads in a different manner than traditional diffusion. This monograph develops the basic theory of fractional calculus and anomalous diffusion, from the point of view of probability. In this book, we will see how fractional calculus and anomalous diffusion can be understood at a deep and intuitive level, using ideas from probability. It covers basic limit theorems for random variables and random vectors with heavy tails. This includes regular variation, triangular arrays, infinitely divisible laws, random walks, and stochastic process convergence in the Skorokhod topology. The basic ideas of fractional calculus and anomalous diffusion are closely connected with heavy tail limit theorems. Heavy tails are applied in finance, insurance, physics, geophysics, cell biology, ecology, medicine, and computer engineering. The goal of this book is to prepare graduate students in probability for research in the area of fractional calculus, anomalous diffusion, and heavy tails. Many interesting problems in this area remain open. This book will guide the motivated reader to understand the essential background needed to read and unerstand current research papers, and to gain the insights and techniques needed to begin making their own contributions to this rapidly growing field. 410 0$aDe Gruyter studies in mathematics ;$v43. 606 $aFractional calculus 606 $aDiffusion processes 606 $aStochastic analysis 608 $aElectronic books. 615 0$aFractional calculus. 615 0$aDiffusion processes. 615 0$aStochastic analysis. 676 $a515/.83 686 $aSK 950$2rvk 700 $aMeerschaert$b Mark M.$f1955-$053538 701 $aSikorskii$b Alla$0515174 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910465550403321 996 $aStochastic models for fractional calculus$9856081 997 $aUNINA LEADER 01301nam a22002771i 4500 001 991001232589707536 005 20030221162107.0 008 021202s1971 it |||||||||||||||||ita 035 $ab12118473-39ule_inst 035 $aARCHE-020827$9ExL 040 $aDip.to Filologia Ling. e Lett.$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 245 00$aChiaro Davanzati :$bRime : a linguistic inventory of thirteenth-century italian /$ca cura di Mario L. Alinei 250 $aEd. A. Menichetti 260 $aBologna :$bIl mulino,$c1971 300 $aXI, 409 p. ;$c25 cm 440 0$aSpogli elettronici dell'italiano delle origini e del Duecento.$n2,$pForme ;$v7 440 0$aRicerche linguistiche e lessicografiche dell'Istituto di lingua e letteratura italiane dell'Università di Utrecht ;$v8 700 1 $aMenichetti, Aldo 700 1 $aAlinei, Mario 907 $a.b12118473$b02-04-14$c01-04-03 912 $a991001232589707536 945 $aLE008 LLI.S I A 39$cV. 2.7$g1$i2008000261313$lle008$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12427986$z01-04-03 945 $aLE008 Cr N III 7$cV. 2.7$g2$i2008000243050$lle008$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12427998$z01-04-03 996 $aChiaro Davanzati$9151065 997 $aUNISALENTO 998 $ale008$b01-04-03$cm$da $e-$fita$git $h0$i2 LEADER 01079nas a2200289 i 4500 001 991002435869707536 005 20231114120914.0 008 011205m19069999 || | |eng 022 $a0003-0554 035 $ab11660065-39ule_inst 035 $aPERLE000288$9ExL 080 $aCDU 32 229 4$aThe American political science review 245 04$aThe American political science review /$cAmerican Political Science Association. - 1906- 260 $aBaltimore-Washington,$c1906- 500 $aDà origine da: PS 591 $aCodice CNR: P 00050255 592 $aLE027 1998- 592 $aLE021 1969-1971; 1977; 1981-1982; 710 2 $aAmerican Political Science Association$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0735127 780 00$tDa origine a$bPS 907 $a.b11660065$b02-04-14$c08-07-02 912 $a991002435869707536 945 $aLE027$g1$lle027$o-$pE0.00$q-$rn$so $t18$u0$v0$w0$x0$y.i11882372$z08-07-02 996 $aAmerican political science review$91452167 997 $aUNISALENTO 998 $ale027$b01-01-01$cs$da $e-$feng$gxx $h4$i1