LEADER 05337nam 2200697Ia 450 001 9910465493903321 005 20200520144314.0 010 $a981-4405-64-7 035 $a(CKB)2560000000093375 035 $a(EBL)1019635 035 $a(OCoLC)809977902 035 $a(SSID)ssj0000736700 035 $a(PQKBManifestationID)11395389 035 $a(PQKBTitleCode)TC0000736700 035 $a(PQKBWorkID)10781813 035 $a(PQKB)11628464 035 $a(MiAaPQ)EBC1019635 035 $a(WSP)00002780 035 $a(Au-PeEL)EBL1019635 035 $a(CaPaEBR)ebr10596901 035 $a(CaONFJC)MIL505502 035 $a(EXLCZ)992560000000093375 100 $a20120924d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aChaos, complexity and transport$b[electronic resource] $etheory and applications : proceedings of the CCT '07, Marseille, France, 23-27 May 2011 /$fedited by Xavier Leoncini, Marc Leonetti 210 $aHackensack, NJ ;$aSingapore $cWorld Scientific$dc2012 215 $a1 online resource (273 p.) 300 $aDescription based upon print version of record. 311 $a981-4405-63-9 320 $aIncludes bibliographical references. 327 $aPreface; CONTENTS; Part A Classical Hamiltonian Dynamics; Resonant interaction of charged particles with electromagnetic waves A. A. Vasiliev, A. V. Artemyev, A. I. Neishtadt, D. L. Vainchtein and L. M. Zelenyi; 1. Introduction; 2. Main equations; 3. Single wave (non-relativistic case); 3.1. Normal propagation; 3.2. Oblique propagation; 4. Effects of the second wave; 4.1. Parallel propagation; 4.2. Nonparallel propagation; 5. Relativistic case; 6. Discussion and conclusions; Acknowledgments; References 327 $aSuperrelativistic charged particles acceleration by electromagnetic waves: Self-consistent model A. V. Artemyev, L. M. Zelenyi, and V. L. Krasovsky1. Introduction; 2. Wave-particle interaction; 3. Self-consistent approach; 4. Discussion and conclusions; Acknowledgments; References; Control of atomic transport using autoresonance D. V. Makarov, M. Yu. Uleysky and S. V. Prants; 1. Introduction; 2. Basic equations; 3. Classical dynamics; 4. Numerical simulation; 4.1. Classical autoresonance; 4.2. Quantum autoresonance; 5. Conclusion; Acknowledgments; References 327 $aLagrangian tools to monitor chaotic transport and mixing in the ocean S. V. Prants, M. V. Budyansky and M. Yu. Uleysky1. Introduction; 2. Lagrangian and dynamical systems methods to study transport and mixing in the ocean; 3. Transport and mixing in marine bays; 4. Transport and mixing in the Kuroshio Extension region; 5. Conclusion; References; Stochastic treatment of finite-N fluctuations in the approach towards equilibrium for mean field models W. Ettoumi and M.-C. Firpo; 1. Introduction; 2. General framework; 2.1. N-body Hamiltonian 327 $a2.2. From Kramers-Moyal expansion to the Fokker-Planck equation3. Quasistationary states; 3.1. Botzmann-Gibbs expectations; 3.2. How to recognize QSSs?; 3.3. Large-time disintegration of QSSs; 4. Stochastic hypothesis; 5. A practical example: The Hamiltonian Mean Field model; 5.1. Averaging the Fokker-Planck equation; 5.2. Destruction of the inner structure; 6. Conclusion; References; Anomalous transport and phase space structures B. Meziani, O. Ourrad and X. Leoncini; 1. Introduction; 2. Motion in two waves; 3. Decay of particles into islands of stability; 4. Conclusion; Acknowledgements 327 $aReferencesPart B Nonlinear and Quantum Physics; Nonlinear kinetic modeling of stimulated Raman scattering in a plasma D. Benisti; 1. Introduction; 2. Collisionless dissipation beyond Landau damping; 3. Self-optimization of stimulated Raman scattering; 4. Derivation of Raman reflectivity using an envelope code; 5. Conclusion; References; Occurrence of mixed-mode oscillations in a dusty plasma M. Mikikian, H. Tawidian, T. Lecas and O. Vallee; 1. Introduction; 2. Instabilities in dusty plasmas; 3. Mixed-Mode Oscillations; 4. Evidence of MMOs in dusty plasmas; 5. State transition 327 $a6. State alternation 330 $aThe main goal is to offer readers a panorama of recent progress in nonlinear physics, complexity and transport with attractive chapters readable by a broad audience. It allows readers to gain an insight into these active fields of research and notably promotes the interdisciplinary studies from mathematics to experimental physics. To reach this aim, the book collects a selection of contributions to the CCT11 conference (Marseille, 23 - 27 May 2011). 606 $aChaotic behavior in systems$vCongresses 606 $aTransport theory$vCongresses 606 $aNonlinear theories$vCongresses 606 $aFluid dynamics$vCongresses 608 $aElectronic books. 615 0$aChaotic behavior in systems 615 0$aTransport theory 615 0$aNonlinear theories 615 0$aFluid dynamics 676 $a005.446 676 $a530.4/4 701 $aLeoncini$b Xavier$0936143 701 $aLe?onetti$b M$g(Marc)$0936144 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910465493903321 996 $aChaos, complexity and transport$92108858 997 $aUNINA LEADER 01367nam 2200445 450 001 9910155072703321 005 20230803015500.0 010 $a1-62417-164-8 035 $a(CKB)3710000000973416 035 $a(MiAaPQ)EBC4773065 035 $a(EXLCZ)993710000000973416 100 $a20170116h20132013 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aAdult drug courts $ebrief overview and assessments /$fJoan B. Calahan, editor 210 1$aNew York, [New York] :$cNova Publishers,$d2013. 210 4$d©2013 215 $a1 online resource (109 pages) 225 1 $aLaw, Crime and Law Enforcement 300 $aIncludes index. 311 $a1-62417-163-X 410 0$aLaw, crime and law enforcement. 606 $aDrug courts$zUnited States 606 $aDrug abuse$xTreatment$xLaw and legislation$zUnited States 606 $aDrug abuse$xTreatment$xLaw and legislation 615 0$aDrug courts 615 0$aDrug abuse$xTreatment$xLaw and legislation 615 0$aDrug abuse$xTreatment$xLaw and legislation. 676 $a345.730277 702 $aCalahan$b Joan B. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910155072703321 996 $aAdult drug courts$93411573 997 $aUNINA LEADER 03761nam 22005895 450 001 9910300105203321 005 20230809013323.0 010 $a3-319-99489-1 024 7 $a10.1007/978-3-319-99489-5 035 $a(CKB)4100000007111065 035 $a(MiAaPQ)EBC5598558 035 $a(DE-He213)978-3-319-99489-5 035 $z(PPN)258862718 035 $a(PPN)232471916 035 $a(EXLCZ)994100000007111065 100 $a20181103d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2) /$fby John Guaschi, Daniel Juan-Pineda, Silvia Millán López 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (88 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8201 311 $a3-319-99488-3 327 $aIntroduction -- Lower algebraic K-theory of the finite subgroups of Bn(S˛) -- The braid group B4(S˛) and the conjugacy classes of its maximal virtually cyclic subgroups -- Lower algebraic K-theory groups of the group ring Z[B4(S˛)] -- Appendix A: The fibred isomorphism conjecture -- Appendix B: Braid groups -- References. 330 $aThis volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results reveal new K-theoretical phenomena with respect to the previous study of other families of groups. The second part of the manuscript focusses on the case of the 4-string braid group of the 2-sphere, which is shown to be hyperbolic in the sense of Gromov. This permits the computation of the infinite maximal virtually cyclic subgroups of this group and their conjugacy classes, and applying the fact that this group satisfies the Fibred Isomorphism Conjecture of Farrell and Jones, leads to an explicit calculation of its lower K-theory. Researchers and graduate students working in K-theory and surface braid groups will constitute the primary audience of the manuscript, particularly those interested in the Fibred Isomorphism Conjecture, and the computation of Nil groups and the lower algebraic K-groups of group rings. The manuscript will also provide a useful resource to researchers who wish to learn the techniques needed to calculate lower algebraic K-groups, and the bibliography brings together a large number of references in this respect. 410 0$aSpringerBriefs in Mathematics,$x2191-8201 606 $aGroup theory 606 $aK-theory 606 $aCommutative algebra 606 $aCommutative rings 606 $aGroup Theory and Generalizations 606 $aK-Theory 606 $aCommutative Rings and Algebras 615 0$aGroup theory. 615 0$aK-theory. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 14$aGroup Theory and Generalizations. 615 24$aK-Theory. 615 24$aCommutative Rings and Algebras. 676 $a512.2 700 $aGuaschi$b John$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767918 702 $aJuan-Pineda$b Daniel$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aMillán López$b Silvia$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300105203321 996 $aThe Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)$91910226 997 $aUNINA