LEADER 03628nam 2200685 450 001 9910465358403321 005 20200520144314.0 010 $a0-691-02133-3 010 $a1-4008-6515-8 024 7 $a10.1515/9781400865154 035 $a(CKB)3710000000222319 035 $a(EBL)1756193 035 $a(OCoLC)888743940 035 $a(SSID)ssj0001332954 035 $a(PQKBManifestationID)12539094 035 $a(PQKBTitleCode)TC0001332954 035 $a(PQKBWorkID)11396104 035 $a(PQKB)10042620 035 $a(MiAaPQ)EBC1756193 035 $a(DE-B1597)447742 035 $a(OCoLC)887802708 035 $a(OCoLC)979780764 035 $a(DE-B1597)9781400865154 035 $a(Au-PeEL)EBL1756193 035 $a(CaPaEBR)ebr10909209 035 $a(CaONFJC)MIL637571 035 $a(OCoLC)891398210 035 $a(EXLCZ)993710000000222319 100 $a20140830h19961996 uy 0 101 0 $aeng 135 $aur|nu---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aGlobal surgery formula for the Casson-Walker invariant /$fby Christine Lescop 210 1$aPrinceton, New Jersey :$cPrinceton University Press,$d1996. 210 4$dİ1996 215 $a1 online resource (156 p.) 225 1 $aAnnals of Mathematics Studies ;$vNumber 10 300 $aDescription based upon print version of record. 311 0 $a1-322-06320-6 311 0 $a0-691-02132-5 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tTable of contents --$tChapter 1. Introduction and statements of the results --$tChapter 2. The Alexander series of a link in a rational homology sphere and some of its properties --$tChapter 3. Invariance of the surgery formula under a twist homeomorphism --$tChapter 4. The formula for surgeries starting from rational homology spheres --$tChapter 5. The invariant A. for 3-manifolds with nonzero rank --$tChapter 6. Applications and variants of the surgery formula --$tAppendix. More about the Alexander series --$tBibliography --$tIndex 330 $aThis book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases. As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant. 410 0$aAnnals of mathematics studies ;$vNumber 10. 606 $aSurgery (Topology) 606 $aThree-manifolds (Topology) 608 $aElectronic books. 615 0$aSurgery (Topology) 615 0$aThree-manifolds (Topology) 676 $a514/.72 700 $aLescop$b Christine$f1966-$061272 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910465358403321 996 $aGlobal surgery formula for the Casson-Walker invariant$9375767 997 $aUNINA LEADER 01646nam 2200541 450 001 9910450050303321 005 20200520144314.0 010 $a0-8262-6308-9 035 $a(CKB)1000000000005642 035 $a(OCoLC)179110183 035 $a(CaPaEBR)ebrary10001631 035 $a(SSID)ssj0000212441 035 $a(PQKBManifestationID)11173612 035 $a(PQKBTitleCode)TC0000212441 035 $a(PQKBWorkID)10138039 035 $a(PQKB)11347089 035 $a(MiAaPQ)EBC4388370 035 $a(Au-PeEL)EBL4388370 035 $a(CaPaEBR)ebr10001631 035 $a(OCoLC)56424984 035 $a(EXLCZ)991000000000005642 100 $a20160218h20012001 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNothing abstract $einvestigations in the American literary imagination /$fTom Quirk 210 1$aColumbia, Missouri ;$aLondon, [England] :$cUniversity of Missouri Press,$d2001. 210 4$dİ2001 215 $a1 online resource (246 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-8262-1364-2 320 $aIncludes bibliographical references and index. 606 $aAmerican literature$xHistory and criticism 606 $aImagination 608 $aElectronic books. 615 0$aAmerican literature$xHistory and criticism. 615 0$aImagination. 676 $a810.9/384 700 $aQuirk$b Tom$f1946-$0881669 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450050303321 996 $aNothing abstract$91969098 997 $aUNINA