LEADER 05743nam 2200781 450 001 9910465188103321 005 20200520144314.0 010 $a1-118-52702-X 010 $a1-118-52700-3 010 $a0-470-97193-2 035 $a(CKB)2560000000141299 035 $a(EBL)1675473 035 $a(SSID)ssj0001181371 035 $a(PQKBManifestationID)11681201 035 $a(PQKBTitleCode)TC0001181371 035 $a(PQKBWorkID)11142537 035 $a(PQKB)10324468 035 $a(MiAaPQ)EBC1675473 035 $a(DLC) 2013046075 035 $a(MiAaPQ)EBC4036088 035 $a(Au-PeEL)EBL1675473 035 $a(CaPaEBR)ebr10861075 035 $a(CaONFJC)MIL599769 035 $a(OCoLC)911068817 035 $a(Au-PeEL)EBL4036088 035 $a(CaPaEBR)ebr11110828 035 $a(OCoLC)863127650 035 $a(EXLCZ)992560000000141299 100 $a20140501h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEssential maths for geoscientists $ean introduction /$fPaul I. Palmer 205 $a1st ed. 210 1$aChichester, England :$cWiley-Blackwell,$d2014. 210 4$dİ2014 215 $a1 online resource (218 p.) 300 $aDescription based upon print version of record. 311 $a1-306-68518-4 311 $a0-470-97194-0 320 $aIncludes bibliographical references and index. 327 $aEssential Maths for Geoscientists; Contents; Preface; 1 How Do You Know that Global Warming Is Not a Hoax?; The Earth system: how do we know what we know?; 2 Preamble; 2.1 The scientific method: pushing back the frontiers of ignorance; 2.2 Subscript and superscripts; 2.3 Scientific number format; 2.4 Significant figures and rounding numbers; 2.5 Units and dimensions; Unit conversion; 2.6 Symbols and numbers; 2.7 Mean, median and variance: commonly encountered statistics; 2.8 Guesstimation; 2.9 Exercises; 3 Algebra; 3.1 Introduction; 3.2 Evaluating algebraic equations 327 $a3.2.1 Preamble: symbols and numbers3.2.2 Powers, roots and bases; 3.3 Simplifying algebraic equations; Removing brackets; 3.4 Factorization; 3.4.1 Factorizing quadratic equations; 3.5 Transposing formulae; 3.6 Word problems; 3.7 Exercises; 4 Solving Equations; 4.1 Solving linear equations; 4.1.1 Graphically; 4.1.2 Analytically; 4.2 Solving simultaneous equations; 4.3 Solving quadratic equations; 4.3.1 Square roots; 4.3.2 Completing the square; 4.4 Exercises; 5 Logarithms and Exponentials; 5.1 Exponentials; 5.2 Logarithms; 5.2.1 Logarithm laws; 5.2.2 Solving exponential equations 327 $a5.2.3 Power laws and scaling exponents5.3 Log-normal and log-log plots: when and how to use them; 5.4 Exercises; 6 Uncertainties, Errors, and Statistics; 6.1 Errors; 6.1.1 Important definitions; 6.1.2 Measures of error; 6.2 Combining errors; 6.2.1 Equations with one variable; 6.2.2 Equations with two or more variables; 6.2.3 Linear equations; 6.2.4 Products; 6.2.5 Combining results of different experiments; 6.3 Statistics; 6.3.1 Graphs; 6.3.2 Descriptive statistics; 6.4 Correlations; 6.5 Exercises; 6.5 Exercises; 7 Trigonometry; 7.1 Some geoscience applications of trigonometry 327 $a7.2 Anatomy of a triangle7.3 Angles: degrees and radians; 7.4 Calculating angles given a trigonometric ratio; 7.5 Cosine and sine rules for non-right-angled triangles; 7.6 Exercises; 8 Vectors; 8.1 What is a vector?; 8.2 Resolving a vector; 8.3 Vector algebra; 8.3.1 Adding and subtracting vectors; 8.3.2 Multiplying a vector by a scalar; 8.3.3 The resultant of two perpendicular vectors; 8.4 Resolving non-perpendicular vectors; 8.5 Exercises; 9 Calculus 1: Differentiation; 9.1 A graphical interpretation of differentiation; 9.2 A general formula for differentiation 327 $a9.3 The derivative of some common functions9.4 Differentiation of the sum and difference of functions; 9.5 Higher derivatives; 9.6 Maxima and minima; 9.7 Exercises; 10 Calculus 2: Integration; 10.1 Introduction; 10.2 Definite integrals; Area under a curve; 10.3 Numerical integration; 10.4 Exercises; 11 Bringing It All Together; A Answers to Problems; A.1 Chapter 2: Preamble; A.2 Chapter 3: Algebra; A.3 Chapter 4: Solving Equations; A.4 Chapter 5: Logarithms and Exponentials; A.5 Chapter 6: Uncertainties, Errors, and Statistics; A.6 Chapter 7: Trigonometry; A.7 Chapter 8: Vectors 327 $aA.8 Chapter 9: Differentiation 330 $aMaths for Geoscientists is an accessible, student-friendly introduction to the essential mathematics required by those students taking degree courses within the Geosciences. Clearly structured throughout, this book carefully guides the student step by step through the mathematics they will encounter and will provide numerous applied examples throughout to enhance students understanding and to place each technique into context. Opening with a chapter explaining the need for studying mathematics within geosciences the book then moves on to cover algebra, equations, solutions, log 606 $aGeology$xMathematics 606 $aMathematics$xStudy and teaching 606 $aEcology$xMathematical models 606 $aEnvironmental protectionels$xMathematical models 608 $aElectronic books. 615 0$aGeology$xMathematics. 615 0$aMathematics$xStudy and teaching. 615 0$aEcology$xMathematical models. 615 0$aEnvironmental protectionels$xMathematical models. 676 $a510.24/55 700 $aPalmer$b Paul I.$01034658 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910465188103321 996 $aEssential maths for geoscientists$92453920 997 $aUNINA