LEADER 03947nam 22007212 450 001 9910464957203321 005 20151005020623.0 010 $a1-107-23323-2 010 $a1-107-33291-5 010 $a1-107-33457-8 010 $a1-107-33623-6 010 $a1-139-01946-5 010 $a1-299-25742-9 010 $a1-107-33226-5 010 $a1-107-33540-X 035 $a(CKB)3460000000128971 035 $a(OCoLC)828423681 035 $a(CaPaEBR)ebrary10659339 035 $a(SSID)ssj0000834202 035 $a(PQKBManifestationID)11460252 035 $a(PQKBTitleCode)TC0000834202 035 $a(PQKBWorkID)10981151 035 $a(PQKB)11737902 035 $a(UkCbUP)CR9781139019460 035 $a(MiAaPQ)EBC1139554 035 $a(PPN)199146020 035 $a(Au-PeEL)EBL1139554 035 $a(CaPaEBR)ebr10659339 035 $a(CaONFJC)MIL456992 035 $a(OCoLC)829459852 035 $a(EXLCZ)993460000000128971 100 $a20110216d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic calculus and differential equations for physics and finance /$fJoseph L. McCauley, Physics Department University of Houston$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xi, 206 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-76340-1 311 $a1-107-32647-8 320 $aIncludes bibliographical references and index. 327 $aRandom variables and probability distributions -- Martingales, Markov, and nonstationarity -- Stochastic calculus -- Ito processes and Fokker-Planck equations -- Selfsimilar Ito processes -- Fractional Brownian motion -- Kolmogorov's PDEs and Chapman-Kolmogorov -- Non Markov Ito processes -- Black-Scholes, martingales, and Feynman-Katz -- Stochastic calculus with martingales -- Statistical physics and finance, a brief history of each -- Introduction to new financial economics -- Statistical ensembles and time series analysis -- Econometrics -- Semimartingales. 330 $aStochastic calculus provides a powerful description of a specific class of stochastic processes in physics and finance. However, many econophysicists struggle to understand it. This book presents the subject simply and systematically, giving graduate students and practitioners a better understanding and enabling them to apply the methods in practice. The book develops Ito calculus and Fokker-Planck equations as parallel approaches to stochastic processes, using those methods in a unified way. The focus is on nonstationary processes, and statistical ensembles are emphasized in time series analysis. Stochastic calculus is developed using general martingales. Scaling and fat tails are presented via diffusive models. Fractional Brownian motion is thoroughly analyzed and contrasted with Ito processes. The Chapman-Kolmogorov and Fokker-Planck equations are shown in theory and by example to be more general than a Markov process. The book also presents new ideas in financial economics and a critical survey of econometrics. 517 3 $aStochastic Calculus & Differential Equations for Physics & Finance 606 $aStochastic processes 606 $aDifferential equations 606 $aStatistical physics 606 $aFinance$xMathematical models 615 0$aStochastic processes. 615 0$aDifferential equations. 615 0$aStatistical physics. 615 0$aFinance$xMathematical models. 676 $a519.2 700 $aMcCauley$b Joseph L.$021376 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910464957203321 996 $aStochastic calculus and differential equations for physics and finance$92456436 997 $aUNINA