LEADER 01245cam0-22004331i-450- 001 990007186130403321 005 20151123095057.0 035 $a000718613 035 $aFED01000718613 035 $a(Aleph)000718613FED01 035 $a000718613 100 $a20021021d1989----km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a<>comunione legale$fAuletta ... [et al.]$ga cura di C. Massimo Bianca$gappendice di Giorgio Oppo 210 $aMilano$cGiuffrč$d1989 215 $a2 v.$d23 cm 676 $a346.015 676 $a346.01 702 1$aBianca,$bCesare Massimo$f<1932- > 702 1$aOppo,$bGiorgio$f<1916-2008> 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990007186130403321 952 $aDPR 11-303/1$b7827$fDEC 952 $aDPR 11-303/2$b7828$fDEC 952 $aA-I-D-42A/B$b1128 DIP.$fDDRC 952 $aA-I-D-44A/B$b1389 DIP.$fDDRC 952 $a10-C-358/3$b1365$fDDCP 952 $a10-C-358/2$b1365$fDDCP 952 $a10-C-358/1$b1365$fDDCP 952 $aVIII C 314$b28231*$fFGBC 952 $aVIII C 300$b16585*$fFGBC 959 $aDEC 959 $aDDRC 959 $aDDCP 959 $aFGBC 996 $aComunione legale$962440 997 $aUNINA LEADER 04241nam 2200673 450 001 9910464848103321 005 20210421194324.0 010 $a1-4008-5274-9 024 7 $a10.1515/9781400852741 035 $a(CKB)3710000000128520 035 $a(EBL)1689375 035 $a(OCoLC)881568749 035 $a(SSID)ssj0001228549 035 $a(PQKBManifestationID)12476106 035 $a(PQKBTitleCode)TC0001228549 035 $a(PQKBWorkID)11167903 035 $a(PQKB)11600707 035 $a(MiAaPQ)EBC1689375 035 $a(StDuBDS)EDZ0000989992 035 $a(DE-B1597)447973 035 $a(OCoLC)979742471 035 $a(DE-B1597)9781400852741 035 $a(Au-PeEL)EBL1689375 035 $a(CaPaEBR)ebr10884735 035 $a(CaONFJC)MIL619589 035 $a(EXLCZ)993710000000128520 100 $a20140704h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTopics in quaternion linear algebra /$fLeiba Rodman 205 $aCourse Book 210 1$aPrinceton, New Jersey ;$aOxfordshire, England :$cPrinceton University Press,$d2014. 210 4$d©2014 215 $a1 online resource (379 p.) 225 1 $aPrinceton Series in Applied Mathematics 300 $aDescription based upon print version of record. 311 0 $a0-691-16185-2 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tPreface --$tChapter One. Introduction --$tChapter Two. The algebra of quaternions --$tChapter Three. Vector spaces and matrices: Basic theory --$tChapter Four. Symmetric matrices and congruence --$tChapter Five. Invariant subspaces and Jordan form --$tChapter Six. Invariant neutral and semidefinite subspaces --$tChapter Seven. Smith form and Kronecker canonical form --$tChapter Eight. Pencils of hermitian matrices --$tChapter Nine. Skewhermitian and mixed pencils --$tChapter Ten. Indefinite inner products: Conjugation --$tChapter Eleven. Matrix pencils with symmetries: Nonstandard involution --$tChapter Twelve. Mixed matrix pencils: Nonstandard involutions --$tChapter Thirteen. Indefinite inner products: Nonstandard involution --$tChapter Fourteen. Matrix equations --$tChapter Fifteen. Appendix: Real and complex canonical forms --$tBibliography --$tIndex 330 $aQuaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used. 410 0$aPrinceton series in applied mathematics. 606 $aAlgebras, Linear$vTextbooks 606 $aQuaternions$vTextbooks 608 $aElectronic books. 615 0$aAlgebras, Linear 615 0$aQuaternions 676 $a512/.5 686 $aSK 230$2rvk 700 $aRodman$b L.$054260 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464848103321 996 $aTopics in quaternion linear algebra$92477335 997 $aUNINA LEADER 01999 am 22005293u 450 001 9910131513503321 005 20221206103615.0 010 $a1-925022-37-4 035 $a(CKB)3710000000443532 035 $a(EBL)3543963 035 $a(OCoLC)902750839 035 $a(SSID)ssj0001562741 035 $a(PQKBManifestationID)16213012 035 $a(PQKBTitleCode)TC0001562741 035 $a(PQKBWorkID)14816345 035 $a(PQKB)10908770 035 $a(MiAaPQ)EBC3543963 035 $a(Au-PeEL)EBL3543963 035 $a(CaPaEBR)ebr11091044 035 $a(EXLCZ)993710000000443532 100 $a20151113h20152015 uy 0 101 0 $aeng 135 $aurbn#---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aTaxonomic tapestries $ethe threads of evolutionary, behavioural and conservation research /$fedited by Alison M. Behie and Marc F. Oxenham ; chapters written in honour of Professor Colin P. Groves ; contributors, Peter Andrews [and twenty two others] 210 1$aActon, Australia :$cAustralian National University Press,$d2015. 210 4$d©2015 215 $a1 online resource (394 pages) $cillustrations, maps 311 $a1-925022-36-6 320 $aIncludes bibliographical references at the end of each chapters and index. 330 $aThis volume explores the complexity, diversity and interwoven nature of taxonomic pursuits within the context of explorations of humans and related species. It also pays tribute to Professor Colin Groves, whose work has had an enormous impact on this field. 606 $aBiology$vClassification 615 0$aBiology 676 $a574.012 702 $aAndrews$b Peter 702 $aGroves$b Colin P. 702 $aOxenham$b Marc F. 702 $aBehie$b Alison M. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910131513503321 996 $aTaxonomic tapestries$92264029 997 $aUNINA