LEADER 01090nam1-22003491i-450- 001 990000555690403321 005 20001010 035 $a000055569 035 $aFED01000055569 035 $a(Aleph)000055569FED01 035 $a000055569 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aSystematic tests with ship models with delta PP = 0.675$fE. Freimanis , Hans Lindgren$g[ SSPPA ] 210 $aGoteborg$cGumpter$d1958 215 $a3/3 v.$d25 cm$cill$d33 p. 463 \1$1001990000572370503321$12001 $a3. : Influence of main dimensions andcentre of Buoyancy 610 0 $aArchitettura navale$aProve in vasca 676 $a623.81 702 1$aFreimanis,$bE. 702 1$aLindgren,$bHans 710 02$aSTATENS SKEEPSPROVNINGSANSTALT$0341194 712 02$aSSPPA 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000555690403321 952 $a05 66 134$b$fDININ 959 $aDININ 996 $aSystematic tests with ship models with delta PP = 0.675$9320396 997 $aUNINA DB $aING01 LEADER 01363nam--2200373---450- 001 990003630470203316 005 20120228095823.0 010 $a2-05-100221-5 035 $a000363047 035 $aUSA01000363047 035 $a(ALEPH)000363047USA01 035 $a000363047 100 $a20120228d1980----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $a||||||||001yy 200 1 $a<> vocabulaire du sentiment dans l'?uvre de J.-J. Rousseau$fsous la direction de Michel Gilot et Jean Sgard par Marie-Therese Bourez ... [et al.] 210 $aGeneve$aParis$cSlatkine$d1980 215 $a473 p.$d22 cm 225 2 $aÉtudes rousseauistes et index des oeuvres de J.-J. Rousseau. Sér. A, Champs sémantiques$v3 410 0$12001$aÉtudes rousseauistes et index des oeuvres de J.-J. Rousseau. Sér. A, Champs sémantiques$v3 600 1$aRousseau,$bJean Jacques <1712-1778>$2BNCF 676 $a194 702 1$aGILOT,$bMichel 702 1$aSGARD,$bJean 702 1$aBOUREZ,$bMarie-Therese 801 0$aIT$bsalbc$gISBD 912 $a990003630470203316 951 $aII.1.C. 2099$b235093 L.M.$cII.1.C.$d00307542$dUMA 959 $aBK 979 $aPASSARO$b90$c20120228$lUSA01$h0954 979 $aPASSARO$b90$c20120228$lUSA01$h0958 996 $aVocabulaire du sentiment dans l'?uvre de J.-J. Rousseau$91138307 997 $aUNISA LEADER 04584nam 2200649 450 001 9910464820703321 005 20200520144314.0 010 $a1-60649-975-0 035 $a(CKB)3710000000120246 035 $a(OCoLC)878077804 035 $a(CaPaEBR)ebrary10861550 035 $a(CaBNVSL)swl00403322 035 $a(MiAaPQ)EBC1675705 035 $a(Au-PeEL)EBL1675705 035 $a(CaPaEBR)ebr10861550 035 $a(CaONFJC)MIL825459 035 $a(OCoLC)878852551 035 $a(EXLCZ)993710000000120246 100 $a20140423d2014 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aBuilding better econometric models using cross section and panel data /$fJeffrey A. Edwards 205 $aFirst edition. 210 1$aNew York, New York (222 East 46th Street, New York, NY 10017) :$cBusiness Expert Press,$d2014. 215 $a1 online resource (116 p.) 225 1 $aEconomics collection,$x2163-7628 300 $aPart of: 2014 digital library. 311 $a1-60649-974-2 320 $aIncludes bibliographical references (pages 95-96) and index. 327 $a1. What is a statistically adequate model and why is it important? -- 2. Basic misspecifications -- 3. Misspecifications for the more advanced reader -- 4. Original specification and drawing inference from it: two related models -- 5. Basic misspecification testing and respecification: the cross-sectional case -- 6. Variance heterogeneity: the cross-sectional case -- 7. Basic misspecification testing and respecification: the panel data case -- 8. Variance heterogeneity: the panel data case -- 9. Consistent and balanced panels -- 10. Dynamic parametric heterogeneity -- Conclusion -- References -- Index. 330 3 $aMany empirical researchers yearn for an econometric model that better explains their data. Yet these researchers rarely pursue this objective for fear of the statistical complexities involved in specifying that model. This book is intended to alleviate those anxieties by providing a practical methodology that anyone familiar with regression analysis can employ--a methodology that will yield a model that is both more informative and is a better representation of the data. Most empirical researchers have been taught in their undergraduate econometrics courses about statistical misspecification testing and respecification. But the impact these techniques can have on the inference that is drawn from their results is often overlooked. In academia, students are typically expected to explore their research hypotheses within the context of theoretical model specification while ignoring the underlying statistics. Company executives and managers, by contrast, seek results that are immediately comprehensible and applicable, while remaining indifferent to the underlying properties and econometric calculations that lead to these results. This book outlines simple, practical procedures that can be used to specify a better model; that is to say, a model that better explains the data. Such procedures employ the use of purely statistical techniques performed upon a publicly available data set, which allows readers to follow along at every stage of the procedure. Using the econometric software Stata (though most other statistical software packages can be used as well), this book shows how to test for model misspecification, and how to respecify these models in a practical way that not only enhances the inference drawn from the results, but adds a level of robustness that can increase the confidence a researcher has in the output that has been generated. By following this procedure, researchers will be led to a better, more finely tuned empirical model that yields better results. 410 0$a2014 digital library. 410 0$aEconomics collection.$x2163-7628 606 $aEconometric models 608 $aElectronic books. 610 $across-sectional data 610 $ainference 610 $amisspecification testing 610 $apanel data 610 $aregression 610 $aregression models 610 $arespecification 610 $aStata 610 $astatistical adequacy 615 0$aEconometric models. 676 $a330.015195 700 $aEdwards$b Jeffrey A.$0898332 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464820703321 996 $aBuilding better econometric models using cross section and panel data$92037542 997 $aUNINA