LEADER 05533nam 2200721Ia 450 001 9910464795803321 005 20200520144314.0 010 $a1-283-73945-3 010 $a981-4425-28-1 035 $a(CKB)3400000000087242 035 $a(EBL)1069826 035 $a(OCoLC)818848240 035 $a(SSID)ssj0000914685 035 $a(PQKBManifestationID)11496727 035 $a(PQKBTitleCode)TC0000914685 035 $a(PQKBWorkID)10864036 035 $a(PQKB)10677017 035 $a(MiAaPQ)EBC1069826 035 $a(WSP)00002828 035 $a(Au-PeEL)EBL1069826 035 $a(CaPaEBR)ebr10622816 035 $a(CaONFJC)MIL405195 035 $a(OCoLC)815693357 035 $a(EXLCZ)993400000000087242 100 $a20121129d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aInterface between quantum information and statistical physics$b[electronic resource] /$feditors, Mikio Nakahara, Shu Tanaka 210 $aSingapore $cWorld Scientific$dc2013 215 $a1 online resource (278 p.) 225 1 $aKinki University Series on Quantum Computing ;$vvol. 7 300 $aDescription based upon print version of record. 311 $a981-4425-27-3 320 $aIncludes bibliographical references. 327 $aSymposium; Preface; List of Participants; Organizing Committee; CONTENTS; Bosons in an Optical Lattice with a Synthetic Magnetic Field K. Kasamatsu; 1. Introduction; 2. Formulation; 2.1. Bose-Hubbard model; 2.2. Frustrated XY model; 2.3. Hamiltonian for hard-core bosons in an effective magnetic field; 2.3.1. CP1 variable and path-integral representation; 3. Ground state; 4. Phase structures at finite T; 4.1. Density fluctuation; 4.2. The finite temperature phase transition; 4.2.1. f=0; 4.2.2. f=1/2; 4.2.3. f=2/5; 5. Summary; Acknowledgments 327 $aAppendix A. Reduction to the Josephson junction regimeAppendix A.1. Determination of Jij; Appendix A.2. Estimation of the parameters; Appendix B. Relation between the CP1 model and the other models; Appendix C. Symmetry of the gauged CP1 model; References; Quantum Simulation Using Exciton-Polaritons and their Applications Toward Accelerated Optimization Problem Search T. Byrnes, K. Yan, K. Kusudo, M. Fraser and Y. Yamamoto; 1. Introduction; 2. Quantum Simulation of the Hubbard Model; 3. Exciton-Polaritons; 4. Quantum Simulation with Exciton-Polaritons 327 $a4.1. Excited state condensation in one dimensional periodic lattice potentials4.2. Mott transition of EPs and indirect excitons in a periodic potential; 5. Accelerated Optimization Problem Search Using BECs; 5.1. The bosonic Ising model; 5.2. Performance of the bosonic Ising model; 6. Summary and Conclusions; Acknowledgments; References; Quantum Simulation Using Ultracold Atoms in Optical Lattices S. Sugawa, S. Taie, R. Yamazaki and Y. Takahashi; 1. Introduction; 1.1. Quantum simulation of Hubbard model; 1.2. Why quantum simulation?; 1.3. Extending the system; 2. An approach using ytterbum 327 $a3. Production of quantum degenerate Yb atoms4. Superfluid-Mott insulator transition; 5. Strongly-correlated phases in Bose-Fermi mixtures; 5.1. Hamiltonian of the system; 5.2. Repulsively interacting Bose-Fermi system; 5.3. Attractively interacting Bose-Fermi system; 5.4. Thermodynamics; 6. Prospect; Acknowledgement; References; Universality of Integrable Model: Baxter's T-Q Equation, SU(N)/SU(2)N-3 Correspondence and -Deformed Seiberg- Witten Prepotential T.-S. Tai; 1. Introduction and summary; 2. XXX spin chain; 2.1. Baxter's T-Q equation; 2.2. More detail; 3. XXX Gaudin model 327 $a3.1. RHS of Fig. 33.2. LHS of Fig. 3; 3.2.1. Free-field representation; 4. Application and discussion; 4.1. Discussion; 4.2. XYZ Gaudin model; Acknowledgments; Appendix A; Definition of wn; References; Exact Analysis of Correlation Functions of the XXZ Chain T. Deguchi, K. Motegi and J. Sato; 1. Introduction; 2. Spin-1/2 XXZ chain; 3. Algebraic Bethe ansatz; 4. Steps to calculate correlation functions; 5. Integrable higher spin XXZ chain; 6. Conclusion; Acknowledgments; Appendix A: Evaluation of (42); References; Classical Analogue of Weak Value in Stochastic Process H. Tomita 327 $a1. Introduction 330 $aThis book is a collection of contributions to the Symposium on Interface between Quantum Information and Statistical Physics held at Kinki University in November 2011. Subjects of the symposium include quantum adiabatic computing, quantum simulator using bosons, classical statistical physics, among others. Contributions to this book are prepared in a self-contained manner so that a reader with a modest background may understand the subjects. 410 0$aKinki University series on quantum computing ;$vv. 7. 606 $aQuantum computers$vCongresses 606 $aQuantum theory$vCongresses 606 $aInformation theory$vCongresses 608 $aElectronic books. 615 0$aQuantum computers 615 0$aQuantum theory 615 0$aInformation theory 676 $a530.12 701 $aNakahara$b Mikio$052615 701 $aTanaka$b Shu$0971675 712 12$aSymposium on Interface between Quantum Information and Statistical Physics$f(2011 :$eOsaka, Japan) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464795803321 996 $aInterface between quantum information and statistical physics$92245029 997 $aUNINA