LEADER 05487nam 2200649Ia 450 001 9910464790503321 005 20200520144314.0 010 $a1-283-73918-6 010 $a1-84816-800-4 035 $a(CKB)3400000000087183 035 $a(EBL)1069832 035 $a(OCoLC)818848249 035 $a(SSID)ssj0000789184 035 $a(PQKBManifestationID)11506109 035 $a(PQKBTitleCode)TC0000789184 035 $a(PQKBWorkID)10726469 035 $a(PQKB)11178828 035 $a(MiAaPQ)EBC1069832 035 $a(WSP)00002820 035 $a(Au-PeEL)EBL1069832 035 $a(CaPaEBR)ebr10622814 035 $a(CaONFJC)MIL405168 035 $a(EXLCZ)993400000000087183 100 $a20121129d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aFlexoelectricity in liquid crystals$b[electronic resource] $etheory, experiments and applications /$fedited by Agnes Buka and Na?ndor E?ber 210 $aSingapore ;$aLondon $cWorld Scientific$dc2013 215 $a1 online resource (299 p.) 300 $aDescription based upon print version of record. 311 $a1-84816-799-7 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; Introduction to Flexoelectricity: Its Discovery and Basic Concepts R.B. Meyer; References; 1. Molecular Theory of Flexoelectricity in Nematic Liquid Crystals M.A. Osipov; 1.1. Introduction; 1.2. Dipolar and Quadrupolar Flexoelectricity; 1.3. Density Functional Theory of Flexoelectricity; 1.4. Influence of Polar Molecular Shape on the Flexocoeccients; 1.5. Influence of Dipole-Dipole Correlations; 1.6. Influence of Real Molecular Shape; References; 2. Flexoelectro-optics and Measurements of Flexocoefficients N.V. Madhusudana; 2.1. Introduction; 2.2. Theoretical Background 327 $a2.3. Experimental Techniques2.4. Some Remarks on the Experimental Results; References; 3. Flexoelectricity of Bent-core Molecules A. Jakli, J. Harden and N. Eber; 3.1. Introduction; 3.1.1. Bent-core (banana-shaped) liquid crystals; 3.1.2. Bent-core nematics; 3.2. Flexoelectricity in Bent-core Liquid Crystals; 3.2.1. The .exoelectric coefficients; 3.2.2. A direct flexing method for measuring flexoelectric coefficients; 3.2.3. Giant flexoelectricity of bent-core nematics studied by the flexing method; 3.3. The Inverse (Converse) Flexoelectric Effect; 3.3.1. Converse giant flexoelectric effect 327 $a3.3.2. Flexoelectricity of bent-core molecules studied by indirect methods3.4. Physical Origin of Giant Flexoelectricity; 3.5. Giant Flexoelectric Effect in Liquid Crystalline Elastomers; Acknowledgments; References; 4. The Role of Flexoelectricity in Pattern Formation A. Buka, T. Toth-Katona, N. Eber, A. Krekhov and W. Pesch; 4.1. Introduction; 4.2. Equilibrium Structures: Flexodomains; 4.3. Dissipative Structures: Electroconvection; 4.3.1. Standard electroconvection; 4.3.2. Non-standard electroconvection; 4.4. Crossover between Flexodomains and Electroconvection 327 $a4.5. Discussions and Conclusions Acknowledgements; References; 5. Flexoelectricity in Chiral Polar Smectics M. Cepic; 5.1. Introduction; 5.2. Ferroelectric Liquid Crystals; 5.2.1. Phenomenological modelling of chiral tilted smectics; 5.2.2. Polar properties and flexoelectricity; 5.3. Antiferroelectric Liquid Crystals; 5.3.1. Structures of phases; 5.3.1.1. The ferroelectric SmC* phase; 5.3.1.2. The antiferroelectric SmC*A phase; 5.3.1.3. The incommensurate SmC* a phase; 5.3.1.4. The antiferroelectric SmC* FI2 phase; 5.3.1.5. The ferrielectric SmC* FI1 phase; 5.3.1.6. The six-layer SmC* 6d phase 327 $a5.3.2. Discrete model 5.3.3. Discrete form of flexoelectricity; 5.3.4. Lock-in periodicities; 5.3.4.1. Achiral interactions a1; 5.3.4.2. Achiral interactions a2; 5.3.4.3. Achiral interactions a3; 5.3.4.4. Chiral interactions f1; 5.3.4.5. Chiral interactions f2; 5.3.4.6. Quadrupolar biquadratic interactions bQ; 5.3.4.7. Period two: The SmC* FI2 phase; 5.3.4.8. Period three: The SmC* FI1 and the SmC* 6d phases; 5.4. Flexoelectricity in Complex Structures; 5.4.1. General direction of polarization; 5.4.2. On the observability of flexoelectric polarization; 5.5. Conclusions; References 327 $a6. Flexoelectricity in Lyotropics and in Living Liquid Crystals A.G. Petrov 330 $aThe book intends to give a state-of-the-art overview of flexoelectricity, a linear physical coupling between mechanical (orientational) deformations and electric polarization, which is specific to systems with orientational order, such as liquid crystals.Chapters written by experts in the field shed light on theoretical as well as experimental aspects of research carried out since the discovery of flexoelectricity. Besides a common macroscopic (continuum) description the microscopic theory of flexoelectricity is also addressed. Electro-optic effects due to or modified by flexoelectricity as we 606 $aLiquid crystals$xElectric properties 606 $aLiquid crystals 608 $aElectronic books. 615 0$aLiquid crystals$xElectric properties. 615 0$aLiquid crystals. 676 $a548.85 701 $aBuka$b Agnes$0986547 701 $aEber$b Milton$0986548 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464790503321 996 $aFlexoelectricity in liquid crystals$92254669 997 $aUNINA