LEADER 05598nam 2200685Ia 450 001 9910464790003321 005 20200520144314.0 010 $a1-283-85062-1 010 $a1-84816-664-8 035 $a(CKB)3400000000087182 035 $a(EBL)1080990 035 $a(OCoLC)817581654 035 $a(SSID)ssj0000789185 035 $a(PQKBManifestationID)12325950 035 $a(PQKBTitleCode)TC0000789185 035 $a(PQKBWorkID)10726008 035 $a(PQKB)10573233 035 $a(MiAaPQ)EBC1080990 035 $a(WSP)00002804 035 $a(Au-PeEL)EBL1080990 035 $a(CaPaEBR)ebr10627516 035 $a(CaONFJC)MIL416312 035 $a(EXLCZ)993400000000087182 100 $a20120626d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFracture mechanics of electromagnetic materials$b[electronic resource] $enonlinear field theory and applications /$fXiaohong Chen, Yiu-Wing Mai 210 $aLondon $cImperial College Press ;$aSingapore ;$aHackensack, NJ $cDistributed by World Scientific$dc2013 215 $a1 online resource (326 p.) 300 $aDescription based upon print version of record. 311 $a1-84816-663-X 320 $aIncludes bibliographical references (p. 276-298) and index. 327 $aForeword; Preface; Contents; List of Tables; List of Figures; Chapter 1: Fundamentals of Fracture Mechanics; 1.1 Historical Perspective; 1.2 Stress Intensity Factors (SIF); 1.3 Energy Release Rate (ERR); 1.4 J-Integral; 1.5 Dynamic Fracture; 1.6 Viscoelastic Fracture; 1.7 Essential Work of Fracture (EWF); 1.8 Configuration Force (Material Force) Method; 1.9 Cohesive Zone and Virtual Internal Bond Models; Chapter 2 : Elements of Electrodynamics of Continua; 2.1 Notations; 2.1.1 Eulerian and Lagrangian descriptions; 2.1.2 Electromagnetic field; 2.1.3 Electromagnetic body force and couple 327 $a2.1.4 Electromagnetic stress tensor and momentum vector2.1.5 Electromagnetic power; 2.1.6 Poynting theorem; 2.2 Maxwell Equations; 2.3 Balance Equations of Mass, Momentum, Moment of Momentum, and Energy; 2.4 Constitutive Relations; 2.5 Linearized Theory; Chapter 3 : Introduction to Thermoviscoelasticity; 3.1 Thermoelasticity; 3.2 Viscoelasticity; 3.3 Coupled Theory of Thermoviscoelasticity; 3.3.1 Fundamental principles of thermodynamics; 3.3.2 Formulation based on Helmholtz free energy functional; 3.3.3 Formulation based on Gibbs free energy functional 327 $a3.4 Thermoviscoelastic Boundary-Initial Value ProblemsChapter 4 : Overview on Fracture of Electromagnetic Materials; 4.1 Introduction; 4.2 Basic Field Equations; 4.3 General Solution Procedures; 4.4 Debates on Crack-Face Boundary Conditions; 4.5 Fracture Criteria; 4.5.1 Field intensity factors; 4.5.2 Path-independent integral; 4.5.3 Mechanical strain energy release rate; 4.5.4 Global and local energy release rates; 4.6 Experimental Observations; 4.6.1 Indentation test; 4.6.2 Compact tension test; 4.6.3 Bending test; 4.7 Nonlinear Studies; 4.7.1 Electrostriction/magnetostriction 327 $a4.7.2 Polarization/magnetization saturation4.7.3 Domain switching; 4.7.4 Domain wall motion; 4.8 Status and Prospects; Chapter 5 : Crack Driving Force in Electro-Thermo-Elastodynamic Fracture; 5.1 Introduction; 5.2 Fundamental Principles of Thermodynamics; 5.3 Energy Flux and Dynamic Contour Integral; 5.4 Dynamic Energy Release Rate Serving as Crack Driving Force; 5.5 Configuration Force and Energy-Momentum Tensor; 5.6 Coupled Electromechanical Jump/Boundary Conditions; 5.7 Asymptotic Near-Tip Field Solution; 5.8 Remarks 327 $aChapter 6 : Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solids6.1 Introduction; 6.2 Thermodynamic Formulation of Fully Coupled Dynamic Framework; 6.2.1 Field equations and jump conditions; 6.2.2 Dynamic energy release rate; 6.2.3 Invariant integral; 6.3 Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions; 6.3.1 Generalized plane crack problem; 6.3.2 Steady-state solution; 6.3.3 Path-independent integral for steady crack growth; 6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Case; 6.5 Summary 327 $aChapter 7 : Dynamic Crack Propagation in Magneto-Electro-Elastic Solids 330 $aFracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities.Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupl 606 $aFracture mechanics$xMathematics 606 $aNonlinear theories 606 $aMagnetic materials$xFracture 608 $aElectronic books. 615 0$aFracture mechanics$xMathematics. 615 0$aNonlinear theories. 615 0$aMagnetic materials$xFracture. 676 $a620.1/126 676 $a620.1126 700 $aChen$b Xiaohong$01044527 701 $aMai$b Y. W.$f1946-$0932011 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464790003321 996 $aFracture mechanics of electromagnetic materials$92470251 997 $aUNINA