LEADER 03292nam 22006252 450 001 9910464661203321 005 20151005020622.0 010 $a1-107-23842-0 010 $a1-299-39995-9 010 $a1-107-33277-X 010 $a1-107-33689-9 010 $a1-139-54233-8 010 $a1-107-33357-1 010 $a1-107-33523-X 010 $a1-107-33606-6 035 $a(CKB)3460000000128975 035 $a(SSID)ssj0000832914 035 $a(PQKBManifestationID)11476935 035 $a(PQKBTitleCode)TC0000832914 035 $a(PQKBWorkID)10935475 035 $a(PQKB)10339432 035 $a(UkCbUP)CR9781139542333 035 $a(MiAaPQ)EBC1139621 035 $a(Au-PeEL)EBL1139621 035 $a(CaPaEBR)ebr10667768 035 $a(CaONFJC)MIL471245 035 $a(OCoLC)830001169 035 $a(EXLCZ)993460000000128975 100 $a20120702d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCoherence in three-dimensional category theory /$fNick Gurski, University of Sheffield$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (vii, 278 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v201 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-03489-2 311 $a1-107-32713-X 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Background: Bicategorical background ; Coherence for bicategories ; Gray-categories -- Tricategories: The algebraic definition of tricategory ; Examples ; Free constructions ; Basic structure ; Gray-categories and tricategories ; Coherence via Yoneda ; Coherence via free constructions -- Gray-monads: Codescent in Gray-categories ; Codescent as a weighted colimit ; Gray-monads and their algebras ; The reflection of lax algebras into strict algebras ; A general coherence result. 330 $aDimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science. 410 0$aCambridge tracts in mathematics ;$v201. 606 $aTricategories 615 0$aTricategories. 676 $a512/.55 700 $aGurski$b Nick$f1980-$01040911 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910464661203321 996 $aCoherence in three-dimensional category theory$92464129 997 $aUNINA