LEADER 05347nam 2200661 450 001 9910464537903321 005 20200520144314.0 010 $a1-78326-278-8 035 $a(CKB)3710000000092582 035 $a(EBL)1647242 035 $a(SSID)ssj0001211475 035 $a(PQKBManifestationID)11715515 035 $a(PQKBTitleCode)TC0001211475 035 $a(PQKBWorkID)11204243 035 $a(PQKB)11134674 035 $a(MiAaPQ)EBC1647242 035 $a(WSP)0000P899 035 $a(Au-PeEL)EBL1647242 035 $a(CaPaEBR)ebr10845317 035 $a(CaONFJC)MIL580933 035 $a(OCoLC)873140210 035 $a(EXLCZ)993710000000092582 100 $a20140314h20142014 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBeam dynamics in high energy particle accelerators /$fAndrzej Wolski, Univeristy of Liverpool, UK 210 1$aLondon :$cImperial College Press,$d[2014] 210 4$dİ2014 215 $a1 online resource (606 p.) 300 $aDescription based upon print version of record. 311 $a1-78326-277-X 320 $aIncludes bibliographical references and index. 327 $aContents; Preface; I Electromagnetism and Classical Mechanics; 1 Electromagnetic Fields in Accelerator Components; 1.1 Boundary Conditions on Electromagnetic Fields; 1.1.1 Surface of an infinite permeability material; 1.1.2 Surface of an ideal conductor; 1.2 Two-Dimensional Multipole Fields; 1.2.1 Current distribution for a pure multipole; 1.2.2 Geometry of iron-dominated multipole magnets; 1.2.3 Multipole decomposition; 1.3 Three-Dimensional Fields; 1.3.1 Cartesian and cylindrical modes; 1.3.2 Generalised gradients; 1.4 Fields in Radiofrequency Cavities; 1.4.1 Rectangular cavities 327 $a1.4.2 Cylindrical cavities2 Hamiltonian for a Particle in an Accelerator Beam Line; 2.1 The Hamiltonian for a Straight Beam Line; 2.2 Dynamical Variables for Beam Dynamics; 2.3 The Hamiltonian in a Curved Co-ordinate System; 2.4 Symplectic Transfer Maps and Liouville's Theorem; II Single-Particle Linear Dynamics; 3 Linear Transfer Maps for Common Components; 3.1 Drift Space; 3.2 Dipole Magnet; 3.3 Dipole Fringe Fields and Edge Focusing; 3.4 Quadrupole Magnet; 3.5 Solenoid; 3.6 Radiofrequency Cavity; 3.7 Spin Dynamics; 4 Linear Optics in Uncoupled Beam Lines; 4.1 A FODO Lattice 327 $a4.2 The Courant-Snyder Parameters4.3 Action-Angle Variables; 4.4 Courant-Snyder Parameters in a FODO Beam Line; 4.5 Hill's Equation; 4.6 Courant-Snyder Parameters and Particle Distribution; 5 Coupled Optics; 5.1 Transverse-Longitudinal Coupling; 5.1.1 Dispersion; 5.1.2 Momentum compaction and phase slip; 5.1.3 Synchrotron motion; 5.2 Fully Coupled Motion; 5.3 Dispersion Revisited; 5.4 Examples of Coupled Optics; 5.4.1 Uniform solenoid field; 5.4.2 Flat-beam electron source; 6 Linear Imperfections in Storage Rings; 6.1 The Closed Orbit; 6.2 Dipole Field Errors; 6.3 Quadrupole Alignment Errors 327 $a6.4 Focusing Errors6.5 Beam-Based Alignment of Quadrupoles; 6.6 Coupling Errors; 7 Effects of Synchrotron Radiation; 7.1 Classical Radiation: Radiation Damping; 7.2 Quantum Radiation: Quantum Excitation; 7.3 Equilibrium Emittance and Lattice Design; 7.3.1 Natural emittance in a FODO storage ring; 7.3.2 Double-bend achromat; 7.3.3 TME lattices and multibend achromats; 7.4 Computation of Equilibrium Emittances; 7.5 Synchrotron Radiation and Spin Polarisation; III Single-Particle Nonlinear Dynamics; 8 Examples of Nonlinear Effects in Accelerator Beam Lines 327 $a8.1 Longitudinal Dynamics in a Bunch Compressor8.2 Chromaticity in a Linear FODO Beam Line; 8.3 Chromaticity in Storage Rings; 9 Representations of Transfer Maps; 9.1 Lie Transformations; 9.2 Power Series Map for a Sextupole; 9.3 Mixed-Variable Generating Functions; 10 Symplectic Integrators; 10.1 Splitting Methods; 10.2 Explicit Symplectic Integrator for s-dependent Fields; 10.3 Symplectic Runge-Kutta Integrators; 11 Methods for Analysis of Single-Particle Dynamics; 11.1 A Lie Transformation Example: the -I Transformer; 11.2 Canonical Perturbation Theory 327 $a11.2.1 Dipole perturbations: closed orbit distortion 330 $aParticle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an ap 606 $aBeam dynamics 606 $aParticle accelerators 608 $aElectronic books. 615 0$aBeam dynamics. 615 0$aParticle accelerators. 676 $a620.1 676 $a620.1/1228 676 $a620.11228 700 $aWolski$b Andrzej$0884432 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910464537903321 996 $aBeam dynamics in high energy particle accelerators$91975169 997 $aUNINA