LEADER 01675nam 2200613Ia 450 001 9910463942703321 005 20210608132943.0 010 $a91-7343-326-8 035 $a(CKB)3170000000047619 035 $a(SSID)ssj0000883230 035 $a(PQKBManifestationID)11454467 035 $a(PQKBTitleCode)TC0000883230 035 $a(PQKBWorkID)10918919 035 $a(PQKB)11528415 035 $a(MiAaPQ)EBC3327229 035 $a(Au-PeEL)EBL3327229 035 $a(CaPaEBR)ebr10539459 035 $a(OCoLC)787846597 035 $a(EXLCZ)993170000000047619 100 $a20080818d2008 uy 0 101 0 $aswe 181 $ctxt 182 $cc 183 $acr 200 10$aReportage$b[electronic resource] $eatt få fakta att dansa /$fAnders Sundelin 210 $aStockholm $cLeopard$d2008 215 $a288 s 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a91-7343-181-8 606 $aReportage$2sao 606 $aStilistik$2sao 606 $aReporters and reporting 606 $aReportage literature 606 $aLanguage and languages 606 $aStyle 608 $aElectronic books. 610 $aStilistisk 610 $aJournalistik 610 $aReportage 615 7$aReportage. 615 7$aStilistik. 615 0$aReporters and reporting. 615 0$aReportage literature. 615 0$aLanguage and languages. 615 0$aStyle. 676 $a070.43 700 $aSundelin$b Anders$f1948-$0989960 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463942703321 996 $aReportage$92264254 997 $aUNINA LEADER 05192nam 2200625 450 001 9910830717703321 005 20230721033137.0 010 $a1-281-94698-2 010 $a9786611946982 010 $a3-527-62267-5 010 $a3-527-62268-3 035 $a(CKB)1000000000551934 035 $a(EBL)481533 035 $a(OCoLC)277153234 035 $a(SSID)ssj0000112294 035 $a(PQKBManifestationID)11142796 035 $a(PQKBTitleCode)TC0000112294 035 $a(PQKBWorkID)10086817 035 $a(PQKB)10524340 035 $a(MiAaPQ)EBC481533 035 $a(EXLCZ)991000000000551934 100 $a20160819h20082008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBiosimulation in drug development /$fedited by Martin Bertau, Erik Mosekilde, and Hans V. Westerhoff 210 1$aWeinheim, Germany :$cWILEY-VCH Verlag GmbH & Co. KGaA,$d2008. 210 4$d©2008 215 $a1 online resource (542 p.) 300 $aIncludes index. 311 $a3-527-31699-X 327 $aBiosimulation in Drug Development; Contents; Preface; List of Contributors; Part I Introduction; 1 Simulation in Clinical Drug Development; 1.1 Introduction; 1.2 Models for Simulations; 1.3 Simulations in Clinical Drug Development: Practical Examples; 1.3.1 Predicting the Outcome of Phase I Studies of Erythropoietin Receptor Agonists; 1.3.2 Simulations for Antimicrobial Dose Selection; 1.3.3 Optimizing the Design of Phase II Dose Finding Studies; 1.3.4 Predicting the Outcome of Phase III Trials Using Phase II Data; 1.4 Conclusions; 2 Modeling of Complex Biomedical Systems; 2.1 Introduction 327 $a2.2 Pulsatile Secretion of Insulin2.3 Subcutaneous Absorption of Insulin; 2.4 Bursting Pancreatic ?-Cells; 2.5 Conclusions; 3 Biosimulation of Drug Metabolism; 3.1 Introduction; 3.2 Experimental Approaches; 3.2.1 Animal Test Models; 3.2.2 Microbial Models; 3.3 The Biosimulation Approach; 3.4 Ethical Issues; 3.5 PharmBiosim - a Computer Model of Drug Metabolism in Yeast; 3.5.1 General Concept; 3.5.1.1 Chemical Abstraction; 3.5.1.2 Biological Abstraction; 3.5.2 Initial Steps - Experimental Results; 3.5.2.1 Dehalogenation (Pathways II and III); 3.5.2.2 Retro-Claisen Condensation (Pathway IV) 327 $a3.5.2.3 Ester Hydrolysis (Pathway VI)3.5.2.4 Competing Pathways and Stereoselectivity; 3.6 Computational Modeling; 3.6.1 Selection of the Modeling Software; 3.6.2 SBML-compatible Software; 3.6.2.1 Cellware; 3.6.2.2 Copasi; 3.6.2.3 Ecell; 3.6.2.4 JigCell; 3.6.2.5 JSim; 3.6.2.6 Systems Biology Workbench; 3.6.2.7 Virtual Cell; 3.6.2.8 XPPAUT; 3.6.3 CellML-compatible Software; 3.6.4 Kinetic Model; 3.6.4.1 Methods; 3.6.4.2 Model Derivation; 3.6.4.3 Results; 3.6.5 Stoichiometric Model; 3.6.5.1 Methods; 3.6.5.2 Model Derivation; 3.6.5.3 Results 327 $a3.7 Application of the Model to Predict Drug Metabolism3.8 Conclusions; Part II Simulating Cells and Tissues; 4 Correlation Between In Vitro, In Situ, and In Vivo Models; 4.1 Introduction; 4.2 Biophysical Models of Intestinal Absorption; 4.2.1 Colon; 4.2.2 Small Intestine; 4.2.3 Stomach; 4.3 Influence of Surfactants on Intestinal Permeability; 4.3.1 Absorption Experiments in Presence of Surfactants; 4.3.1.1 Colon; 4.3.1.2 Intestine; 4.3.1.3 Stomach; 4.4 Modeling and Predicting Fraction Absorbed from Permeability Values; 4.4.1 Mass Balance, Time-independent Models 327 $a4.4.2 Prediction of the Fraction of Dose Absorbed from In Vitro and In Situ Data4.4.3 Prediction from In Situ Absorption Rate Constant Determined with Closed Loop Techniques; 4.4.4 Prediction from Permeabilities Through Caco-2 Cell Lines; 4.4.5 Prediction from the PAMPA In Vitro System; 4.5 Characterization of Active Transport Parameters; 4.5.1 In Situ Parameter Estimation; 4.5.2 In Vitro-In Situ Correlation; 5 Core-Box Modeling in the Biosimulation of Drug Action; 5.1 Introduction; 5.2 Core-Box Modeling; 5.2.1 Shortcomings of Gray-Box and Minimal Modeling 327 $a5.2.1.1 Full-Scale Mechanistic Gray-Box Modeling 330 $aThis first comprehensive survey to cover all pharmaceutically relevant topics provides a comprehensive introduction to this novel and revolutionary tool, presenting both concepts and application examples of biosimulated cells, organs and organisms.Following an introduction to the role of biosimulation in drug development, the authors go on to discuss the simulation of cells and tissues, as well as simulating drug action and effect. A further section is devoted to simulating networks and populations, and the whole is rounded off by a look at the potential for biosimulation in industrial dru 606 $aDrug development 606 $aDrug development$xSimulation methods 615 0$aDrug development. 615 0$aDrug development$xSimulation methods. 676 $a615.580724 702 $aBertau$b Martin 702 $aMosekilde$b Erik 702 $aWesterhoff$b Hans V. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830717703321 996 $aBiosimulation in drug development$93932722 997 $aUNINA