LEADER 03808nam 2200649 a 450 001 9910463930303321 005 20200520144314.0 010 $a1-283-14441-7 010 $a9786613144416 010 $a981-4299-88-X 035 $a(CKB)3360000000001365 035 $a(EBL)731162 035 $a(OCoLC)741492811 035 $a(SSID)ssj0000634096 035 $a(PQKBManifestationID)12207111 035 $a(PQKBTitleCode)TC0000634096 035 $a(PQKBWorkID)10622242 035 $a(PQKB)11008330 035 $a(MiAaPQ)EBC731162 035 $a(WSP)00007699 035 $a(Au-PeEL)EBL731162 035 $a(CaPaEBR)ebr10480285 035 $a(CaONFJC)MIL314441 035 $a(EXLCZ)993360000000001365 100 $a20110712d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aDependence modeling$b[electronic resource] $evine copula handbook /$feditors, Dorota Kurowicka, Harry Joe 210 $aHackensack, N.J. $cWorld Scientific$d2011 215 $a1 online resource (368 p.) 300 $aDescription based upon print version of record. 311 $a981-4299-87-1 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; 1. Introduction: Dependence Modeling D. Kurowicka; 2. Multivariate Copulae M. Fischer; 3. Vines Arise R. M. Cooke, H. Joe and K. Aas; 4. Sampling Count Variables with Specified Pearson Correlation: A Comparison between a Naive and a C-Vine Sampling Approach V. Erhardt and C. Czado; 5. Micro Correlations and Tail Dependence R. M. Cooke, C. Kousky and H. Joe; 6. The Copula Information Criterion and Its Implications for the Maximum Pseudo-Likelihood Estimator S. Grønneberg; 7. Dependence Comparisons of Vine Copulae with Four or More Variables H. Joe 327 $a8. Tail Dependence in Vine Copulae H. Joe9. Counting Vines O. Morales-Napoles; 10. Regular Vines: Generation Algorithm and Number of Equivalence Classes H. Joe, R. M. Cooke and D. Kurowicka; 11. Optimal Truncation of Vines D. Kurowicka; 12. Bayesian Inference for D-Vines: Estimation and Model Selection C. Czado and A. Min; 13. Analysis of Australian Electricity Loads Using Joint Bayesian Inference of D-Vines with Autoregressive Margins C. Czado, F. G ?artner and A. Min; 14. Non-Parametric Bayesian Belief Nets versus Vines A. Hanea 327 $a15. Modeling Dependence between Financial Returns Using Pair-Copula Constructions K. Aas and D. Berg16. Dynamic D-Vine Model A. Heinen and A. Valdesogo; 17. Summary and Future Directions D. Kurowicka; Index 330 $aThis book is a collaborative effort from three workshops held over the last three years, all involving principal contributors to the vine-copula methodology. Research and applications in vines have been growing rapidly and there is now a growing need to collate basic results, and standardize terminology and methods. Specifically, this handbook will trace historical developments, standardizing notation and terminology, summarize results on bivariate copulae, summarize results for regular vines, and give an overview of its applications. In addition, many of these results are new and not readily 606 $aCopulas (Mathematical statistics) 606 $aDependence (Statistics) 606 $aDistribution (Probability theory) 608 $aElectronic books. 615 0$aCopulas (Mathematical statistics) 615 0$aDependence (Statistics) 615 0$aDistribution (Probability theory) 676 $a519.5 701 $aKurowicka$b Dorota$0971867 701 $aJoe$b Harry$0411519 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463930303321 996 $aDependence modeling$92209613 997 $aUNINA