LEADER 02800nam 2200613 450 001 9910463847603321 005 20210827020151.0 010 $a3-11-037827-2 010 $a3-11-035078-5 024 7 $a10.1515/9783110350784 035 $a(CKB)3280000000038959 035 $a(EBL)1663124 035 $a(SSID)ssj0001433579 035 $a(PQKBManifestationID)11907950 035 $a(PQKBTitleCode)TC0001433579 035 $a(PQKBWorkID)11415039 035 $a(PQKB)10159820 035 $a(MiAaPQ)EBC1663124 035 $a(DE-B1597)252931 035 $a(OCoLC)890071015 035 $a(OCoLC)897035466 035 $a(DE-B1597)9783110350784 035 $a(Au-PeEL)EBL1663124 035 $a(CaPaEBR)ebr11010201 035 $a(CaONFJC)MIL805792 035 $a(EXLCZ)993280000000038959 100 $a20150211h20142014 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aFinite elements in vector lattices /$fMartin R. Weber 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2014. 210 4$dİ2014 215 $a1 online resource (230 p.) 300 $aDescription based upon print version of record. 311 0 $a3-11-035077-7 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$t1. Introduction --$t2. Ordered vector spaces and vector lattices --$t3. Finite, totally finite and self majorizing elements in Archimedean vector lattices --$t4. Finite elements in vector lattices of linear operators --$t5. The space of maximal ideals of a vector lattice --$t6. Topological characterization of finite elements --$t7. Representations of vector lattices and their properties --$t8. Vector lattices of continuous functions with finite elements --$t9. Representations of vector lattices by means of continuous functions --$t10. Representations of vector lattices by means of bases of finite elements --$tList of Examples --$tList of Symbols --$tBibliography --$tIndex 330 $aThe book is the first systematical treatment of the theory of finite elements in Archimedean vector lattices and contains the results known on this topic up to the year 2013.It joins all importantcontributions achieved by a series of mathematicians that can only be found in scattered in literature. 606 $aBoundary value problems$xNumerical solutions 608 $aElectronic books. 615 0$aBoundary value problems$xNumerical solutions. 676 $a515.35 686 $aSK 600$2rvk 700 $aWeber$b Martin R.$016317 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463847603321 996 $aFinite elements in vector lattices$92441506 997 $aUNINA