LEADER 05284nam 2200685Ia 450 001 9910463663003321 005 20200520144314.0 010 $a1-283-90002-5 010 $a981-4383-81-3 035 $a(CKB)3280000000002156 035 $a(EBL)1109705 035 $a(OCoLC)826853973 035 $a(SSID)ssj0000912984 035 $a(PQKBManifestationID)11534273 035 $a(PQKBTitleCode)TC0000912984 035 $a(PQKBWorkID)11011789 035 $a(PQKB)11762924 035 $a(MiAaPQ)EBC1109705 035 $a(WSP)00002850 035 $a(Au-PeEL)EBL1109705 035 $a(CaPaEBR)ebr10640599 035 $a(CaONFJC)MIL421252 035 $a(EXLCZ)993280000000002156 100 $a20060724d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotic time decay in quantum physics$b[electronic resource] /$fDomingos H.U. Marchetti, Walter F. Wreszinski 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2013 215 $a1 online resource (362 p.) 300 $aDescription based upon print version of record. 311 $a981-4383-80-5 320 $aIncludes bibliographical references and index. 327 $aPreface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem 327 $a3.1.3 U?H measures and decay on the average: Strichartz-Last theorem and Guarneri-Last-Combes theorem3.2 Decay in the Lp-Sense; 3.2.1 Relation between decay in the Lp-sense and decay on the average sense; 3.2.2 Decay on the Lp-sense and absolute continuity; 3.2.3 Sojourn time, Sinha's theorem and time-energy uncertainty relation; 3.3 PointwiseDecay; 3.3.1 Does decay in the Lp-sense and/or absolute continuity imply pointwise decay?; 3.3.2 Rajchman measures, and the connection between ergodic theory, number theory and analysis; 3.3.3 Fourier dimension, Salem sets and Salem's method 327 $a3.4 Quantum Dynamical Stability4. Time Decay for a Class of Models with Sparse Potentials; 4.1 Spectral Transition for Sparse Models in d = 1; 4.1.1 Existence of "mobility edges"; 4.1.2 Uniform distribution of Prufer angles; 4.1.3 Proof of Theorem 4.1; 4.2 Decay in the Average; 4.2.1 Anderson-like transition for "separable" sparse models in d = 2; 4.2.2 Uniform ?-Holder continuity of spectral measures; 4.2.3 Formulation, proof and comments of the main result; 4.3 PointwiseDecay; 4.3.1 Pearson's fractal measures: Borderline time-decay for the least sparsemodel; 4.3.2 Gevrey-type estimates 327 $a4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule 327 $a6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy 327 $a6.3.3 Approach to equilibrium in classical mechanics 2 330 $aTime decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time".This monograph is devoted to a clear and precise, yet pedagogical account of the associated concepts and methods. 606 $aAsymptotic symmetry (Physics) 606 $aSymmetry (Physics) 606 $aQuantum field theory 608 $aElectronic books. 615 0$aAsymptotic symmetry (Physics) 615 0$aSymmetry (Physics) 615 0$aQuantum field theory. 676 $a539 676 $a539.7 700 $aMarchetti$b Domingos H. U$g(Domingos Humberto Urbano)$0922576 701 $aWreszinski$b Walter F.$f1946-$0922577 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463663003321 996 $aAsymptotic time decay in quantum physics$92070172 997 $aUNINA LEADER 01118nac# 22002291i 450 001 UON00066291 005 20231205102331.654 100 $a20020107f |0itac50 ba 102 $aFR 105 $a|||| ||||| 110 $ab|||||||||| 200 1 $aCollection Cerfaux-Lefort$fCentre D'Histoire des Religions$g[Directeur des publications: Julien Ries] 463 1$1001UON00002317$12001 $aˆLes ‰études manichéennes$eDes controverses de la réforme aux découvertes du 20. siecle$fJulien Ries$1210 $aLouvain-la-neuve$cCentre d'Histoire des Religions$d1988$1215 $a271 p.$d24 cm$v1 463 1$1001UON00071868$12001 $aˆLes ‰arabes chretiens nomades au temps de Mohammed$fAlfred Havenith$1210 $aLouvain-La-Neuve$cCentre d'Histoire des Religions$d1988$1215 $a154 p.$d24 cm$v7 620 $aBE$dLouvain$3UONL000316 702 1$aRIES$bJulien$3UONV002199 710 02$aCENTRE D'HISTOIRE DES RELIGIONS$3UONV046876$0826075 712 $aCentre d'Histoire des Religions$3UONV249005$4650 801 $aIT$bSOL$c20240220$gRICA 912 $aUON00066291 996 $aCollection Cerfaux-Lefort$91840167 997 $aUNIOR