LEADER 02391nam 2200589 a 450 001 9910463459903321 005 20210616175254.0 010 $a1-61444-022-0 035 $a(CKB)2670000000386404 035 $a(EBL)3330334 035 $a(SSID)ssj0000713220 035 $a(PQKBManifestationID)11400430 035 $a(PQKBTitleCode)TC0000713220 035 $a(PQKBWorkID)10658277 035 $a(PQKB)11487012 035 $a(UkCbUP)CR9781614440222 035 $a(MiAaPQ)EBC3330334 035 $a(Au-PeEL)EBL3330334 035 $a(CaPaEBR)ebr10722445 035 $a(OCoLC)929120250 035 $a(EXLCZ)992670000000386404 100 $a19840711d1984 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRandom walks and electric networks$b[electronic resource] /$fby Peter G. Doyle, J. Laurie Snell 210 $aWashington, D.C. $cMathematical Association of America$dc1984 215 $a1 online resource (174 p.) 225 0$aCarus mathematical monographs ;$vno. 22 300 $aSecond printing, 1988. 311 $a0-88385-024-9 320 $aIncludes bibliographical references (p. 151-153) and index. 327 $apt. I. Random walks on finite networks -- pt. II. Random walks on infinite networks. 330 $aProbability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and Electric Networks looks at the interplay of physics and mathematics in terms of an example — the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level. 410 0$aCarus 606 $aRandom walks (Mathematics) 606 $aElectric network topology 608 $aElectronic books. 615 0$aRandom walks (Mathematics) 615 0$aElectric network topology. 676 $a519.2/82 700 $aDoyle$b Peter G$0536628 701 $aSnell$b J. Laurie$g(James Laurie),$f1925-2011.$012469 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463459903321 996 $aRandom walks and electric networks$91455935 997 $aUNINA