LEADER 03095oam 2200589I 450 001 9910463454003321 005 20200520144314.0 010 $a0-429-08645-8 010 $a1-4665-0731-4 024 7 $a10.1201/b14673 035 $a(CKB)2670000000394798 035 $a(EBL)1335822 035 $a(OCoLC)855504686 035 $a(SSID)ssj0000876813 035 $a(PQKBManifestationID)11498109 035 $a(PQKBTitleCode)TC0000876813 035 $a(PQKBWorkID)10905959 035 $a(PQKB)10502161 035 $a(MiAaPQ)EBC1335822 035 $a(Au-PeEL)EBL1335822 035 $a(CaPaEBR)ebr10735242 035 $a(CaONFJC)MIL515572 035 $a(OCoLC)853455792 035 $a(EXLCZ)992670000000394798 100 $a20180331d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum mechanical tunneling in chemical physics /$fHiroki Nakamura, Gennady Mil'nikov 210 1$aBoca Raton :$cCRC Press, Taylor & Francis Group,$d2013. 215 $a1 online resource (225 p.) 300 $aDescription based upon print version of record. 311 $a1-4665-0732-2 320 $aIncludes bibliographical references. 327 $aFront Cover; Quantum Mechanical Tunneling in Chemical Physics; Copyright; Table of Contents; Preface; 1. Introduction; 2. One-Dimensional Theory; 3. Two-Dimensional Theory; 4. Multidimensional Effects: Peculiar Phenomena; 5. Nonadiabatic Tunneling; 6. Multidimensional Theory of Tunneling Splitting; 7. Numerical Applications to Polyatomic Molecules; 8. Decay of Metastable States; 9. Tunneling in Chemical Reactions; 10. Concluding Remarks and Future Perspectives; Appendix A: Proofs of Equation (2.95) and Equation (2.110); Appendix B: Derivation of Equation (6.80) 327 $aAppendix C: Herring Formula in Curved SpaceAppendix D: Derivation of Equation (6.97); Appendix E: Computer Code to Calculate Instanton Trajectory; Appendix F: Derivation of Some Equations in Section 6.4.2; Bibliography; Back Cover 330 $aThis text explores methodologies that can be usefully applied to various realistic problems in molecular spectroscopy and chemical dynamics. It covers the direct evaluation of reaction rate constants for both electronically adiabatic chemical reactions on a single adiabatic potential energy surface and non-adiabatic chemical reactions in which two or more adiabatic potential energy surfaces are involved. It also discusses the non-adiabatic tunneling phenomenon that represents one class of non-adiabatic transitions on which the authors have made an extensive research so far--$cProvided by publisher. 606 $aTunneling (Physics) 608 $aElectronic books. 615 0$aTunneling (Physics) 676 $a537.6/226 700 $aNakamura$b Hiroki$0882209 702 $aMil'nikov$b Gennady 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910463454003321 996 $aQuantum mechanical tunneling in chemical physics$92295300 997 $aUNINA