LEADER 01430nam--2200409---450- 001 990002414510203316 005 20090113145912.0 010 $a88-14-10845-5 035 $a000241451 035 $aUSA01000241451 035 $a(ALEPH)000241451USA01 035 $a000241451 100 $a20050427d2004----km-y0itay0103----ba 101 0 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> societą di gestione del risparmio$enovita legislative, prodotti, modalita di controllo dei limiti di contenimento del rischio, regole di comportamento, performance attribution, segnalazioni di vigilanza$fArturo Sanguinetti, Massimiliano Forte 205 $a2. ed 210 $aMilano$cGiuffrč$dcopyr. 2004 215 $aXXII,339 p.$d24 cm 225 2 $aCosa & come$iSocieta 410 0$12001$aCosa & come$iSocieta 606 $aIntermediari finanziari$xLegislazione 606 $aMercati finanziari$xLegislazione 676 $a332 700 1$aSANGUINETTI,$bArturo$0279540 701 1$aFORTE,$bMassimiliano$0420579 801 0$aIT$bsalbc$gISBD 912 $a990002414510203316 951 $a332 SAN 3 (IRA 17 174 A)$b45319 G.$cIRA 17$d00116224 959 $aBK 969 $aECO 979 $aIANNONE$b90$c20050427$lUSA01$h1221 979 $aIANNONE$b90$c20050427$lUSA01$h1224 979 $aRSIAV3$b90$c20090113$lUSA01$h1459 996 $aSocietį di gestione del risparmio$9881943 997 $aUNISA LEADER 05407nam 2200649Ia 450 001 9910462815103321 005 20200520144314.0 010 $a981-4508-30-6 035 $a(CKB)2670000000360840 035 $a(EBL)1193106 035 $a(OCoLC)844311044 035 $a(SSID)ssj0000950332 035 $a(PQKBManifestationID)12320526 035 $a(PQKBTitleCode)TC0000950332 035 $a(PQKBWorkID)11005753 035 $a(PQKB)10476209 035 $a(MiAaPQ)EBC1193106 035 $a(WSP)00002991 035 $a(Au-PeEL)EBL1193106 035 $a(CaPaEBR)ebr10700690 035 $a(CaONFJC)MIL486900 035 $a(EXLCZ)992670000000360840 100 $a20120110d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLattice Boltzmann method$b[electronic resource] $eand its applications in engineering /$fZhaoli Guo, Chang Shu 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2013 215 $a1 online resource (420 p.) 225 0 $aAdvances in computational fluid dynamics ;$vvol. 3 300 $aDescription based upon print version of record. 311 $a981-4508-29-2 320 $aIncludes bibliographical references (p. 373-396) and index. 327 $aDedication; Preface; Contents; Chapter 1 Introduction; 1.1 Description of Fluid System at Different Scales; 1.1.1 Microscopic description: molecular dynamics; 1.1.2 Mesoscopic description: kinetic theory; 1.1.3 Macroscopic description: hydrodynamic equations; 1.2 Numerical Methods for Fluid Flows; 1.3 History of LBE; 1.3.1 Lattice gas automata; 1.3.2 From LGA to LBE; 1.3.3 From continuous Boltzmann equation to LBE; 1.4 Basic Models of LBE; 1.4.1 LBGK models; 1.4.2 From LBE to the Navier-Stokes equations: Chapman-Enskog expansion; 1.4.3 LBE models with multiple relaxation times; 1.5 Summary 327 $aChapter 2 Initial and Boundary Conditions for Lattice Boltzmann Method2.1 Initial Conditions; 2.1.1 Equilibrium scheme; 2.1.2 Non-equilibrium scheme; 2.1.3 Iterative method; 2.2 Boundary Conditions for Flat Walls; 2.2.1 Heuristic schemes; 2.2.2 Hydrodynamic schemes; 2.2.3 Extrapolation schemes; 2.3 Boundary Conditions for Curved Walls; 2.3.1 Bounce-back schemes; 2.3.2 Fictitious equilibrium schemes; 2.3.3 Interpolation schemes; 2.3.4 Non-equilibrium extrapolation scheme; 2.4 Pressure Boundary Conditions; 2.4.1 Periodic boundary conditions; 2.4.2 Hydrodynamic schemes 327 $a2.4.3 Extrapolation schemes2.5 Summary; Chapter 3 Improved Lattice Boltzmann Models; 3.1 Incompressible Models; 3.2 Forcing Schemes with Reduced Discrete Lattice Effects; 3.2.1 Scheme with modified equilibrium distribution function; 3.2.2 Schemes with a forcing term; 3.2.3 Analysis of the forcing schemes; 3.2.4 Forcing scheme for MRT-LBE; 3.3 LBE with Nonuniform Grids; 3.3.1 Grid-refinement and multi-block methods; 3.3.2 Interpolation methods; 3.3.3 Finite-difference based LBE methods; 3.3.4 Finite-volume based LBE methods; 3.3.5 Finite-element based LBE methods 327 $a3.3.6 Taylor series expansion and least square based methods3.4 Accelerated LBE Methods for Steady Flows; 3.4.1 Spectrum analysis of the hydrodynamic equations of the standard LBE; 3.4.2 Time-independent methods; 3.4.3 Time-dependent methods; 3.5 Summary; Chapter 4 Sample Applications of LBE for Isothermal Flows; 4.1 Algorithm Structure of LBE; 4.2 Lid-Driven Cavity Flow; 4.3 Flow around a Fixed Circular Cylinder; 4.4 Flow around an Oscillating Circular Cylinder with a Fixed Downstream One; 4.5 Summary; Chapter 5 LBE for Low Speed Flows with Heat Transfer; 5.1 Multi-speed Models 327 $a5.1.1 Low-order models5.1.2 High-order models; 5.2 MS-LBE Models Based on Boltzmann Equation; 5.2.1 Hermite expansion of distribution function; 5.2.2 Temperature/flow-dependent discrete velocities; 5.2.3 Temperature-dependent discrete velocities; 5.2.4 Constant discrete velocities; 5.2.5 MS-LBGK models based on DVBE with constant discrete velocities; 5.3 Off-Lattice LBE Models; 5.4 MS-LBE Models with Adjustable Prandtl Number; 5.5 DDF-LBE Models without Viscous Dissipation and Compression Work; 5.5.1 DDF-LBE based on multi-component models; 5.5.2 DDF-LBE for non-ideal gases 327 $a5.5.3 DDF-LBE for incompressible flows 330 $aLattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of 410 0$aAdvances in Computational Fluid Dynamics 606 $aLattice dynamics 606 $aLattice field theory 608 $aElectronic books. 615 0$aLattice dynamics. 615 0$aLattice field theory. 676 $a530.138 700 $aGuo$b Zhaoli$0968820 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462815103321 996 $aLattice Boltzmann method$92200932 997 $aUNINA