LEADER 05526nam 2200673 a 450 001 9910462814003321 005 20200520144314.0 010 $a981-4366-94-3 035 $a(CKB)2670000000372475 035 $a(EBL)1223949 035 $a(SSID)ssj0000970454 035 $a(PQKBManifestationID)11548144 035 $a(PQKBTitleCode)TC0000970454 035 $a(PQKBWorkID)11021009 035 $a(PQKB)11115940 035 $a(MiAaPQ)EBC1223949 035 $a(WSP)00003079 035 $a(PPN)189426209 035 $a(Au-PeEL)EBL1223949 035 $a(CaPaEBR)ebr10719598 035 $a(CaONFJC)MIL496459 035 $a(OCoLC)854974286 035 $a(EXLCZ)992670000000372475 100 $a20130621d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAdvances in wave turbulence$b[electronic resource] /$fedited by Victor Shrira, Sergey Nazarenko 210 $aSingapore $cWorld Scientific Pub. Co.$d2013 215 $a1 online resource (294 p.) 225 1 $aWorld Scientific series on nonlinear science. Series A ;$vv. 83 300 $aDescription based upon print version of record. 311 $a981-4366-93-5 320 $aIncludes bibliographical references. 327 $aPreface; Contents; 1. Wave Turbulence: A Story Far from Over Alan C. Newell and Benno Rumpf; 1.1. Introduction; 1.2. A Tutorial on the Wave Turbulence Closure; 1.3. Solutions of the Kinetic Equation; 1.4. Experimental Evidence; 1.4.1. Capillary wave turbulence; 1.4.2. Gravity wave turbulence; 1.4.3. Vibrating plate turbulence: can one hear the Kolmogorov spectrum?; 1.4.4. Condensates of classical light waves; 1.5. Two Open Questions; 1.6. Open Challenges; Appendix 1. Derivation of the Governing Equation for Gravity-Capillary Waves; Appendix 2. Asymptotic Analysis; Acknowledgment; Bibliography 327 $a2. Fluctuations of the Energy Flux in Wave Turbulence S. Auma?tre, E. Falcon and S. Fauve2.1. Introduction; 2.2. Spectra in the Gravity and Capillary Regimes; 2.3. Direct Measurement of the Injected Power; 2.4. Fluctuations of the Energy Flux; 2.5. Conclusion; Acknowledgment; Bibliography; 3. Wave Turbulence in Astrophysics Sebastien Galtier; 3.1. Introduction; 3.2. Waves and Turbulence in Space Plasmas; 3.2.1. Interplanetary medium; 3.2.2. Solar atmosphere; 3.3. Turbulence and Anisotropy; 3.3.1. Navier-Stokes turbulence; 3.3.2. Incompressible MHD turbulence; 3.3.2.1. Strong turbulence 327 $a3.3.2.2. Iroshnikov-Kraichnan spectrum3.3.2.3. Breakdown of isotropy; 3.3.2.4. Emergence of anisotropic laws; 3.3.3. Towards an Alfven wave turbulence theory; 3.3.4. Wave turbulence in compressible MHD; 3.3.5. Wave turbulence in Hall and electron MHD; 3.4. Wave Turbulence Formalism; 3.4.1. Wave amplitude equation; 3.4.2. Statistics and asymptotics; 3.4.3. Wave kinetic equations; 3.4.4. Finite flux solutions; 3.5. Main Results and Predictions; 3.5.1. Alfven wave turbulence; 3.5.2. Compressible MHD; 3.5.3. Whistler wave turbulence; 3.5.4. Hall MHD; 3.6. Conclusion and Perspectives 327 $a3.6.1. Observations3.6.2. Simulations; 3.6.3. Open questions; Bibliography; 4. Optical Wave Turbulence S. K. Turitsyn, S. A. Babin, E. G. Turitsyna, G. E. Falkovich, E. V. Podivilov and D. V. Churkin; 4.1. Optical Wave Turbulence: Introduction; 4.2. Basics of Fiber Lasers; 4.3. Key Mathematical Models; 4.4. Weak Optical Wave Turbulence in Fiber Lasers; 4.4.1. Theory of weak wave turbulence in the context of fiber laser; 4.4.2. Experiments; 4.4.3. Statistical properties and optical rogue wave generation via wave turbulence in RFLs; 4.5. Optical Wave Turbulence in Ultra-Long Fiber Lasers 327 $a4.5.1. Basics of ultra-long fiber lasers4.5.2. Mode structure in ultra-long fiber lasers; 4.5.3. Nonlinear broadening of optical spectra; 4.6. Developed Optical Wave Turbulence in Fiber Lasers; 4.6.1. The impact of fiber dispersion; 4.7. Spectral Condensate in Fiber Lasers; 4.8. Conclusions and Perspectives; Acknowledgments; Bibliography; 5. Wave Turbulence in a Thin Elastic Plate: The Sound of the Kolmogorov Spectrum? G. During and N. Mordant; 5.1. Weak Turbulence Theory for Thin Elastic Plates; 5.1.1. The Foppl-von Karman equations for a thin elastic plate 327 $a5.1.2. Kinetic equation and spectra 330 $aWave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows us to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) whi 410 0$aWorld Scientific series on nonlinear science.$nSeries A,$pMonographs and treatises ;$vv. 83. 606 $aWave-motion, Theory of 606 $aTurbulence 608 $aElectronic books. 615 0$aWave-motion, Theory of. 615 0$aTurbulence. 676 $a531.1133 701 $aShrira$b Victor$0946023 701 $aNazarenko$b Sergey$0515335 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462814003321 996 $aAdvances in wave turbulence$92137147 997 $aUNINA