LEADER 01703nam 2200517 a 450 001 9910462793203321 005 20200520144314.0 010 $a0-8132-2066-1 035 $a(CKB)2670000000310051 035 $a(EBL)3135040 035 $a(SSID)ssj0000782140 035 $a(PQKBManifestationID)11418676 035 $a(PQKBTitleCode)TC0000782140 035 $a(PQKBWorkID)10735404 035 $a(PQKB)11752188 035 $a(MiAaPQ)EBC3135040 035 $a(OCoLC)815970285 035 $a(MdBmJHUP)muse24170 035 $a(Au-PeEL)EBL3135040 035 $a(CaPaEBR)ebr10642506 035 $a(OCoLC)922996860 035 $a(EXLCZ)992670000000310051 100 $a20060816d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aWisdom's apprentice$b[electronic resource] $eThomistic essays in honor of Lawrence Dewan, O.P. /$fedited by Peter A. Kwasniewski 210 $aWashington, D.C. $cCatholic University of America Press$dc2007 215 $a1 online resource (329 p.) 300 $aDescription based upon print version of record. 311 $a0-8132-1495-5 320 $aIncludes bibliographical references (p. 283-297) and index. 327 $apt. 1. Metaphysics -- pt. 2. Natural theology -- pt. 3. Philosophy of nature -- pt. 4. Ethics and spirituality. 608 $aElectronic books. 676 $a149/.91 701 $aDewan$b Lawrence$f1932-$0901576 701 $aKwasniewski$b Peter A.$f1971-$01041757 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462793203321 996 $aWisdom's apprentice$92465497 997 $aUNINA LEADER 03342nam 22005535 450 001 9910349316803321 005 20200706202257.0 010 $a3-030-29530-3 024 7 $a10.1007/978-3-030-29530-1 035 $a(CKB)4100000009751193 035 $a(MiAaPQ)EBC5969416 035 $a(DE-He213)978-3-030-29530-1 035 $a(PPN)26914868X 035 $a(EXLCZ)994100000009751193 100 $a20191031d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCarleman Estimates for Second Order Partial Differential Operators and Applications $eA Unified Approach /$fby Xiaoyu Fu, Qi Lü, Xu Zhang 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (xi, 127 pages) $cillustrations 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 $a3-030-29529-X 327 $a1 Introduction -- 2 Carleman estimates for second order elliptic operators and applications -- 3 Carleman estimates for second order parabolic operators and applications -- 4 Carleman estimates for second order hyperbolic operators and applications. 330 $aThis book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aDifferential equations, Partial 606 $aSystem theory 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aDifferential equations, Partial. 615 0$aSystem theory. 615 14$aPartial Differential Equations. 615 24$aSystems Theory, Control. 676 $a515 676 $a515.7242 700 $aFu$b Xiaoyu$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781292 702 $aLü$b Qi$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aZhang$b Xu$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349316803321 996 $aCarleman Estimates for Second Order Partial Differential Operators and Applications$92498801 997 $aUNINA