LEADER 03410nam 22006972 450 001 9910462540103321 005 20151005020622.0 010 $a1-107-21312-6 010 $a1-139-09009-7 010 $a1-139-09291-X 010 $a1-280-77592-0 010 $a1-139-09240-5 010 $a9786613686312 010 $a1-139-09100-X 010 $a1-139-00372-0 010 $a1-139-09189-1 035 $a(CKB)2670000000164862 035 $a(EBL)713046 035 $a(OCoLC)782864218 035 $a(SSID)ssj0000613988 035 $a(PQKBManifestationID)11931531 035 $a(PQKBTitleCode)TC0000613988 035 $a(PQKBWorkID)10587839 035 $a(PQKB)10603524 035 $a(UkCbUP)CR9781139003728 035 $a(MiAaPQ)EBC713046 035 $a(Au-PeEL)EBL713046 035 $a(CaPaEBR)ebr10546253 035 $a(CaONFJC)MIL368631 035 $a(EXLCZ)992670000000164862 100 $a20110124d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSimple theories and hyperimaginaries /$fEnrique Casanovas$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (xiv, 169 pages) $cdigital, PDF file(s) 225 1 $aLecture notes in logic ;$v39 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-11955-3 320 $aIncludes bibliographical references and index. 327 $aPreliminaries -- x, y-Types, stability and simplicity -- x, y-Types and the local rank D -- Forking -- Independence -- The local rank CB x, y (pi) -- Heirs and coheirs -- Stable forking -- Lascar strong types -- The independence theorem -- Canonical bases -- Abstract independence relations -- Supersimple theories -- More ranks -- Hyperimaginaries -- Hyperimaginary forking -- Canonical bases revisited -- Elimination of hyperimaginaries -- Orthogonality and analysability -- Hyperimaginaries in supersimple theories. 330 $aThis book is an up-to-date introduction to simple theories and hyperimaginaries, with special attention to Lascar strong types and elimination of hyperimaginary problems. Assuming only knowledge of general model theory, the foundations of forking, stability and simplicity are presented in full detail. The treatment of the topics is as general as possible, working with stable formulas and types and assuming stability or simplicity of the theory only when necessary. The author offers an introduction to independence relations as well as a full account of canonical bases of types in stable and simple theories. In the last chapters the notions of internality and analyzability are discussed and used to provide a self-contained proof of elimination of hyperimaginaries in supersimple theories. 410 0$aLecture notes in logic ;$v39. 517 3 $aSimple Theories & Hyperimaginaries 606 $aModel theory 606 $aFirst-order logic 606 $aHyperspace 615 0$aModel theory. 615 0$aFirst-order logic. 615 0$aHyperspace. 676 $a511.3/4 700 $aCasanovas$b Enrique$f1957-$01052873 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910462540103321 996 $aSimple theories and hyperimaginaries$92484396 997 $aUNINA