LEADER 00834nam0-22003131i-450- 001 990003281930403321 005 20001010 035 $a000328193 035 $aFED01000328193 035 $a(Aleph)000328193FED01 035 $a000328193 100 $a20000920d19676km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aGEOGRAFIA DE ESPANA Y PORTUGAL 205 $a1 210 $aBarcelona$cMontaner$d1967 (6 Vol.) 215 $app.464+314+424+497+290+481 610 0 $aEnciclopedie sull'Europa 676 $a003.030 700 1$aTerán,$bManuel : de$0423049 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003281930403321 952 $a003.030.TER$b27719/793/794$fDECGE 959 $aDECGE 996 $aGEOGRAFIA DE ESPANA Y PORTUGAL$9451428 997 $aUNINA DB $aING01 LEADER 04768nam 2200649 a 450 001 9910462510703321 005 20211015203153.0 010 $a3-03813-501-1 035 $a(CKB)2670000000230077 035 $a(EBL)1872604 035 $a(SSID)ssj0000780569 035 $a(PQKBManifestationID)12286033 035 $a(PQKBTitleCode)TC0000780569 035 $a(PQKBWorkID)10785401 035 $a(PQKB)11012095 035 $a(MiAaPQ)EBC1872604 035 $a(Au-PeEL)EBL1872604 035 $a(CaPaEBR)ebr10604168 035 $a(OCoLC)811963200 035 $a(EXLCZ)992670000000230077 100 $a20110712d2011 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced computational engineering and experimenting $eselected, peer reviewed papers from the Fourth International Conference on Advanced Computational Engineering and Experimenting (ACE-X 2010), July 8th-9th, 2010, held at Hotel Concorde La Fayette Paris, France /$fedited by Andreas O?chsner, Lucas F.M. da Silva and Holm Altenbach 210 $aStafa-Zurich, Switzerland $cTrans Tech Publications$d2011 215 $a1 online resource (122 pages) 225 0$aKey engineering materials,$x1013-9826 ;$vv. 478 300 $aDescription based upon print version of record. 311 $a3-03785-135-X 320 $aIncludes bibliographical references and indexes. 327 $aAdvanced Computational Engineering and Experimenting; Preface; Table of Contents; Production of Magnesium Titanate-Based Nanocomposites via Mechanochemical Method; Simultaneously Synthesis and Encapsulation of Metallic Nanoparticles Using Linear-Dendritic Block Copolymers of Poly(ethylene glycol)-Poly(citric acid); Study of the Properties of Al2O3-Ag Nanopowders Produced by an Innovative Thermal Decomposition-Reduction and Silver Nitrate Reduction Methods; Mechanical and Microstructural Properties of Cement Paste Incorporating Nano Silica Particles with Various Specific Surface Areas 327 $aImprovement of the Corrosion Resistance for the Galvanic Coupling of Steel with Polypyrrole Coated Galvanized Steel Experimental Characterization of Hydrogen Embrittlement in API 5L X60 and API 5L X80 Steels; Corrosion Monitoring in Marine Environment Using Wavelet Description; Experimental and FEM Analysis of the AA 6082 Processed by Equal Channel Angular Extrusion; A Probabilistic Approach to the Simulation of Non-Linear Stress-Strain Relationships for Oriented Strandboard Subject to In-Plane Tension; Generalized Maxwell Model as Viscoelastic Lubricant in Journal Bearing 327 $aComparative Analysis of Vaporization Rates of 5456 Aluminum Alloying Elements during CO2 Laser Welding Analysis of Chip Damage Risk in Thermosonic Wire Bonding; Free Vibration Characteristics of Thermally Loaded Rectangular Plates; Structure-Property Relationship of Burn Collagen Reinforcing Musculo-Skeletal Tissues; Femur Design Parameters and Contact Stresses at UHMWPE Hip Joint Cup; Biomechanical Characterization of a Cervical Corporectomy Using Porcine Specimens, Following an Experimental Approach; Keywords Index; Authors Index 330 $aThe goal of this special collection was to provide an unique opportunity to exchange information, to present the latest results as well as to review relevant issues concerning contemporary research in mechanical engineering. Young scientists in particular were encouraged to submit their latest research results, and this is reflected in the final result. Review from Book News Inc.: The 16 selected and refereed papers discuss recent developments in mechanical engineering such as mechanical and microstructural properties of cement paste incorporating nanometer silica particles with various specific 410 0$aKey Engineering Materials 606 $aEngineering mathematics$vCongresses 606 $aEngineering mathematics$xExperiments$vCongresses 606 $aEngineering mathematics$xExperiments$xComputer simulation$vCongresses 608 $aElectronic books. 615 0$aEngineering mathematics 615 0$aEngineering mathematics$xExperiments 615 0$aEngineering mathematics$xExperiments$xComputer simulation 676 $a620.11 701 $aO?chsner$b Andreas$0317948 701 $aSilva$b Lucas Filipe Martins da$f1973-$01056172 701 $aAltenbach$b Holm$f1956-$0762891 712 12$aInternational Conference on Advanced Computational Engineering and Experimenting 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462510703321 996 $aAdvanced computational engineering and experimenting$92490320 997 $aUNINA LEADER 13180nam 2200565 450 001 9910648493303321 005 20230308190724.0 010 $a1-118-87711-X 010 $a1-118-71644-2 010 $a9781118716410 024 7 $a10.1002/9781118716410 035 $a(EBL)1652170 035 $a(MiAaPQ)EBC1652170 035 $a(PPN)203928318 035 $a(EXLCZ)992670000000547155 100 $a20151222d2014 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectromagnetic modeling and simulation$b[electronic resource] /$fLevent Sevgi 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2014] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2014] 215 $a1 online resource (666 pages) 225 1 $aIEEE Press series on electromagnetic wave theory 300 $aDescription based upon print version of record. 311 08$aOnline version: Sevgi, Levent. Electromagnetic modeling and simulation Hoboken, New Jersey : John Wiley & Sons, Inc., 2014 9781118716441 (DLC) 2014004699 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aPreface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92. 327 $a4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182. 327 $a8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package ?WedgeGUIDE,? 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275. 327 $a10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417. 327 $a14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604. 327 $a16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659. 330 $a"Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In Electromagnetic Modeling and Simulation, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. The book thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling. Access to online MATLAB scripts and coding tools render this book an ideal resource for electrical engineers and researchers"--$cProvided by publisher. 330 $a"Provides the reader with first steps in EM MODSIM as well as tools for medium and high-level code developers and users"--$cProvided by publisher. 410 0$aIEEE Press series on electromagnetic wave theory. 606 $aElectromagnetism$xComputer simulation 615 0$aElectromagnetism$xComputer simulation. 676 $a621.380285/53 686 $aSCI022000$2bisacsh 700 $aSevgi$b Levent$0845969 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910648493303321 996 $aElectromagnetic modeling and simulation$91889380 997 $aUNINA