LEADER 03556nam 22007332 450 001 9910462383803321 005 20151005020624.0 010 $a1-107-22634-1 010 $a1-280-87795-2 010 $a9786613719263 010 $a1-139-37825-2 010 $a1-139-02607-0 010 $a1-139-37539-3 010 $a1-139-37140-1 010 $a1-139-37968-2 010 $a1-139-37682-9 035 $a(CKB)2670000000207529 035 $a(EBL)880642 035 $a(OCoLC)794731490 035 $a(SSID)ssj0000678523 035 $a(PQKBManifestationID)11449823 035 $a(PQKBTitleCode)TC0000678523 035 $a(PQKBWorkID)10727061 035 $a(PQKB)11395544 035 $a(UkCbUP)CR9781139026079 035 $a(MiAaPQ)EBC880642 035 $a(PPN)199693226 035 $a(Au-PeEL)EBL880642 035 $a(CaPaEBR)ebr10574287 035 $a(CaONFJC)MIL371926 035 $a(EXLCZ)992670000000207529 100 $a20110218d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNonlinear Perron-Frobenius theory /$fBas Lemmens, Roger Nussbaum$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xii, 323 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v189 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-89881-1 320 $aIncludes bibliographical references (p. [307]-318) and index. 327 $aPreface -- What is nonlinear Perron-Frobenius theory? -- Non-expansiveness and nonlinear Perron-Frobenius theory -- Dynamics of non-expansive maps -- Sup-norm non-expansive maps -- Eigenvectors and eigenvalues of nonlinear cone maps -- Eigenvectors in the interior of the cone -- Applications to matrix scaling problems -- Dynamics of subhomogeneous maps -- Dynamics of integral-preserving maps -- Appendix A. The Birkhoff-Hopf theorem -- Appendix B. Classical Perron-Frobenius theory. 330 $aIn the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology. 410 0$aCambridge tracts in mathematics ;$v189. 606 $aNon-negative matrices 606 $aEigenvalues 606 $aEigenvectors 606 $aAlgebras, Linear 615 0$aNon-negative matrices. 615 0$aEigenvalues. 615 0$aEigenvectors. 615 0$aAlgebras, Linear. 676 $a512/.5 700 $aLemmens$b Bas$0516851 702 $aNussbaum$b Roger D.$f1944- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910462383803321 996 $aNonlinear Perron-Frobenius theory$92492436 997 $aUNINA