LEADER 02923nam 22006252 450 001 9910462349703321 005 20151005020622.0 010 $a1-316-08965-7 010 $a1-107-23958-3 010 $a1-283-61058-2 010 $a9786613923035 010 $a1-139-55087-X 010 $a1-139-55583-9 010 $a1-139-54962-6 010 $a1-139-55458-1 010 $a1-139-55212-0 010 $a1-139-08443-7 035 $a(CKB)2670000000240662 035 $a(EBL)989115 035 $a(OCoLC)810933088 035 $a(SSID)ssj0000710805 035 $a(PQKBManifestationID)11374697 035 $a(PQKBTitleCode)TC0000710805 035 $a(PQKBWorkID)10672904 035 $a(PQKB)11440275 035 $a(UkCbUP)CR9781139084437 035 $a(MiAaPQ)EBC989115 035 $a(Au-PeEL)EBL989115 035 $a(CaPaEBR)ebr10602811 035 $a(CaONFJC)MIL392303 035 $a(EXLCZ)992670000000240662 100 $a20110506d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aClassical algebraic geometry $ea modern view /$fIgor V. Dolgachev$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xii, 639 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-47132-X 311 $a1-107-01765-3 327 $aMachine generated contents note: Preface; 1. Polarity; 2. Conics and quadrics; 3. Plane cubics; 4. Determinantal equations; 5. Theta characteristics; 6. Plane quartics; 7. Cremona transformations; 8. Del Pezzo surfaces; 9. Cubic surfaces; 10. Geometry of lines; Bibliography; Index. 330 $aAlgebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book. 606 $aGeometry, Algebraic 615 0$aGeometry, Algebraic. 676 $a516.3/5 700 $aDolgachev$b I$g(Igor V.),$0149516 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910462349703321 996 $aClassical algebraic geometry$92473362 997 $aUNINA