LEADER 04443nam 2200721 450 001 9910462259403321 005 20200520144314.0 010 $a1-283-89594-3 010 $a1-60650-244-1 024 7 $a10.5643/9781606502440 035 $a(CKB)2670000000234569 035 $a(EBL)954633 035 $a(OCoLC)830170673 035 $a(SSID)ssj0000700890 035 $a(PQKBManifestationID)12321575 035 $a(PQKBTitleCode)TC0000700890 035 $a(PQKBWorkID)10670643 035 $a(PQKB)11589425 035 $a(OCoLC)809198659 035 $a(CaBNvSL)swl00401221 035 $a(MiAaPQ)EBC954633 035 $a(Au-PeEL)EBL954633 035 $a(CaPaEBR)ebr10588194 035 $a(CaONFJC)MIL420844 035 $a(EXLCZ)992670000000234569 100 $a20190118d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPolymer testing $enew instrumental methods /$fMuralisrinivasan Subramanian 205 $a1st ed. 210 1$aNew York :$cMomentum Press, LLC,$d[2012] 210 4$dİ2012 215 $a1 online resource (201 p.) 300 $aIncludes index. 311 $a1-60650-242-5 320 $aIncludes bibliographical references and index. 327 $aPreface -- About the author -- 327 $a1. Introduction -- 1.1 Polymer basics -- 1.2 Morphological aspects -- 1.3 Chemical aspects -- 1.4 Classification of polymers -- 1.5 Polymerization techniques -- 1.6 Polymerization processes -- 1.7 Polymer synthesis -- 1.8 Polymer structure and properties -- 1.9 Requirements for instrumental methods -- References -- 327 $a2. Polymer separation techniques -- 2.1 Chromatographic methods -- 2.2 Liquid chromatography -- 2.3 High-performance liquid chromatography -- 2.4 Gel permeation chromatography -- 2.5 Field-flow fractionation -- 2.6 Super-fluid chromatography -- 2.7 Gas chromatography -- 2.8 Future trends -- References -- 327 $a3. Spectroscopic techniques -- 3.1 Fourier-transform infrared (FTIR) spectroscopy -- 3.2 Raman spectroscopy -- 3.3 Nuclear magnetic resonance spectroscopy (NMR) -- References -- 327 $a4. Thermal analysis and degradation -- 4.1 Thermogravimetric analysis -- 4.2 Differential scanning calorimetry -- 4.3 Differential thermal analysis -- 4.4 Polymer degradation -- References -- 327 $a5. Rheology and other instrumental techniques -- 5.1 Rheology -- 5.2 Mass spectrometry -- 5.3 Matrix-assisted laser desorption ionization (MALDI) mass spectrometry -- 5.4 Electron microscopy -- 5.5 Future trends -- References -- 327 $a6. Thermoplastics -- 6.1 Polyethylene (PE) -- 6.2 Polypropylene (PP) -- 6.3 Polystyrene (PS) -- 6.4 Polyethylene terephthalate (PET) -- 6.5 Polyvinylchloride (PVC) -- 6.6 Polymethylmethacrylate (PMMA) -- 6.7 Polyvinyl acetate (PVAC) -- 6.8 Nylon -- 6.9 Polycarbonate (PC) -- 6.10 Infrared bands for identification of thermoplastic materials -- 6.11 Future trends -- References -- 327 $a7. Thermosets -- 7.1 Phenol formaldehyde -- 7.2 Urea formaldehyde -- 7.3 Melamine formaldehyde -- 7.4 Epoxy thermosets -- 7.5 Future trends -- References -- 327 $a8. Polymer blends and composites -- 8.1 Polymer blends -- 8.2 Polymer composites -- 8.3 Future trends -- 8.4 Conclusion -- References -- Index. 330 3 $aPolymers are complex in nature, and their utility depends on mechanism and process conditions. They become even more complex as a result of blends, composites, and branched and graft structures of unusual architecture. The polymerization must be carefully controlled to obtain the desired properties and processing characteristics. Therefore, it is necessary to understand the influence of polymer properties on their end-use performance. The polymer industry has also grown, and consumption is increasing every year. It is necessary to understand the various facets of the polymerization process in order to understand the variations in polymer properties. 606 $aPolymers$xAnalysis 606 $aPolymers$xTesting 608 $aElectronic books. 615 0$aPolymers$xAnalysis. 615 0$aPolymers$xTesting. 676 $a547.7046 700 $aSubramanian$b Muralisrinivasan$0866246 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462259403321 996 $aPolymer testing$91933304 997 $aUNINA