LEADER 03458nam 2200649Ia 450 001 9910462028403321 005 20211202202837.0 010 $a3-11-090512-4 024 7 $a10.1515/9783110905120 035 $a(CKB)2670000000250817 035 $a(EBL)936428 035 $a(OCoLC)843635427 035 $a(SSID)ssj0000560176 035 $a(PQKBManifestationID)11342024 035 $a(PQKBTitleCode)TC0000560176 035 $a(PQKBWorkID)10568730 035 $a(PQKB)11742925 035 $a(MiAaPQ)EBC936428 035 $a(WaSeSS)Ind00013381 035 $a(DE-B1597)40789 035 $a(OCoLC)979762977 035 $a(DE-B1597)9783110905120 035 $a(PPN)175577269 035 $a(Au-PeEL)EBL936428 035 $a(CaPaEBR)ebr10597530 035 $a(EXLCZ)992670000000250817 100 $a19950110d1995 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aRiemannian geometry$b[electronic resource] /$fWilhelm P.A. Klingenberg 205 $a2nd rev. ed. 210 $aBerlin ;$aNew York $cW. de Gruyter$d1995 215 $a1 online resource (420 p.) 225 0 $aDe Gruyter Studies in Mathematics ;$v1 300 $aDescription based upon print version of record. 311 0 $a3-11-014593-6 320 $aIncludes bibliographical references (p. [393]-402) and index. 327 $tFront matter --$tChapter 1: Foundations. --$t1.0 Review of Differential Calculus and Topology --$t1.1 Differentiable Manifolds --$t1.2 Tensor Bundles --$t1.3 Immersions and Submersions --$t1.4 Vector Fields and Tensor Fields --$t1.5 Covariant Derivation --$t1.6 The Exponential Mapping --$t1.7 Lie Groups --$t1.8 Riemannian Manifolds --$t1.9 Geodesics and Convex Neighborhoods --$t1.10 Isometric Immersions --$t1.11 Riemannian Curvature --$t1.12 Jacobi Fields --$tChapter 2: Curvature and Topology. --$t2.1 Completeness and Cut Locus --$t2.1 Appendix - Orientation --$t2.2 Symmetric Spaces --$t2.3 The Hilbert Manifold of H1-curves --$t2.4 The Loop Space and the Space of Closed Curves --$t2.5 The Second Order Neighborhood of a Critical Point --$t2.5 Appendix - The S1- and the ?2-action on AM --$t2.6 Index and Curvature --$t2.6 Appendix - The Injectivity Radius for 1/4-pinched Manifolds --$t2.7 Comparison Theorems for Triangles --$t2.8 The Sphere Theorem --$t2.9 Non-compact Manifolds of Positive Curvature --$tChapter 3: Structure of the Geodesic Flow. --$t3.1 Hamiltonian Systems --$t3.2 Properties of the Geodesic Flow --$t3.3 Stable and Unstable Motions --$t3.4 Geodesics on Surfaces --$t3.5 Geodesics on the Ellipsoid --$t3.6 Closed Geodesies on Spheres --$t3.7 The Theorem of the Three Closed Geodesics --$t3.8 Manifolds of Non-Positive Curvature --$t3.9 The Geodesic Flow on Manifolds of Negative Curvature --$t3.10 The Main Theorem for Surfaces of Genus 0 --$tReferences --$tIndex 330 $aRiemannian Geometry (Degruyter Studies in Mathematics) 410 3$aDe Gruyter Studies in Mathematics 606 $aGeometry, Riemannian 606 $aGeometry, Differential 608 $aElectronic books. 615 0$aGeometry, Riemannian. 615 0$aGeometry, Differential. 676 $a516.3/73 700 $aKlingenberg$b Wilhelm$f1924-2010.$042056 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462028403321 996 $aRiemannian geometry$945718 997 $aUNINA LEADER 01242nam0-2200409---450 001 990010114580403321 005 20220422112501.0 010 $a978-88-7947-617-1 035 $a001011458 035 $aFED01001011458 035 $a(Aleph)001011458FED01 035 $a001011458 100 $a20161028d2017----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $aManuale di nutrizione applicata$fRiccardi ... [et al.] 205 $a4. ed. 210 $aNapoli$cIdelson-Gnocchi Sorbona$dc2017 215 $aXVI, 447 p.$cill.$d25 cm 610 0 $aNutrizione$aManuali 702 1$aRiccardi,$bGabriele 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990010114580403321 952 $a90 J 2b 22$b167/2016$fFMEBC 952 $a90 J 2b 23$b168/2016$fFMEBC 952 $a90 J 2b 24$b169/2016$fFMEBC 952 $a612.3-RIC-2$bINV. INT. 2020/454$fSC1 952 $a612.3-RIC-2A$bINV. INT. 2020/455$fSC1 952 $a612..3 RIC-2B$bINV. INT. 2020/456$fSC1 952 $a612.3-RIC-2C$bINV. INT. 2020/457$fSC1 952 $a612.3 RIC-2D$bINV. INT. 2020/458$fSC1 959 $aSC1 959 $aFMEBC 996 $aManuale di nutrizione applicata$9785298 997 $aUNINA