LEADER 02012nam 2200637 a 450 001 9910461447903321 005 20200520144314.0 010 $a1-62100-163-6 035 $a(CKB)2670000000151238 035 $a(EBL)3021943 035 $a(SSID)ssj0000687576 035 $a(PQKBManifestationID)12332360 035 $a(PQKBTitleCode)TC0000687576 035 $a(PQKBWorkID)10757137 035 $a(PQKB)10632747 035 $a(MiAaPQ)EBC3021943 035 $a(Au-PeEL)EBL3021943 035 $a(CaPaEBR)ebr10686266 035 $a(OCoLC)777816869 035 $a(EXLCZ)992670000000151238 100 $a20101206d2011 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBulk metallic glasses$b[electronic resource] /$fThomas F. George, Renat R. Letfullin, and Guoping Zhang, editors 210 $aNew York $cNova Science Publishers$d2011 215 $a1 online resource (171 p.) 225 1 $aPhysics research and technology 300 $aDescription based upon print version of record. 311 $a1-61122-938-3 320 $aIncludes bibliographical references and index. 410 0$aPhysics research and technology. 606 $aMetallic glasses$xElectric properties 606 $aBulk solids 606 $aSuperconductivity 606 $aElectron-phonon interactions 606 $aElectromagnetic compatibility 608 $aElectronic books. 615 0$aMetallic glasses$xElectric properties. 615 0$aBulk solids. 615 0$aSuperconductivity. 615 0$aElectron-phonon interactions. 615 0$aElectromagnetic compatibility. 676 $a530.4/13 701 $aGeorge$b Thomas F.$f1947-$0441024 701 $aLetfullin$b Renat R$0788036 701 $aZhang$b Guoping$f1970-$0891978 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910461447903321 996 $aBulk metallic glasses$91992080 997 $aUNINA LEADER 04332nam 2200937z- 450 001 9910576884703321 005 20220621 035 $a(CKB)5720000000008327 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/84516 035 $a(oapen)doab84516 035 $a(EXLCZ)995720000000008327 100 $a20202206d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aMicromachines for Dielectrophoresis 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 online resource (186 p.) 311 08$a3-0365-4338-4 311 08$a3-0365-4337-6 330 $aAn outstanding compilation that reflects the state-of-the art on Dielectrophoresis (DEP) in 2020. Contributions include: - A novel mathematical framework to analyze particle dynamics inside a circular arc microchannel using computational modeling. - A fundamental study of the passive focusing of particles in ratchet microchannels using direct-current DEP. - A novel molecular version of the Clausius-Mossotti factor that bridges the gap between theory and experiments in DEP of proteins. - The use of titanium electrodes to rapidly enrich T. brucei parasites towards a diagnostic assay. - Leveraging induced-charge electrophoresis (ICEP) to control the direction and speed of Janus particles. - An integrated device for the isolation, retrieval, and off-chip recovery of single cells. - Feasibility of using well-established CMOS processes to fabricate DEP devices. - The use of an exponential function to drive electrowetting displays to reduce flicker and improve the static display performance. - A novel waveform to drive electrophoretic displays with improved display quality and reduced flicker intensity. - Review of how combining electrode structures, single or multiple field magnitudes and/or frequencies, as well as variations in the media suspending the particles can improve the sensitivity of DEP-based particle separations. - Improvement of dielectrophoretic particle chromatography (DPC) of latex particles by exploiting differences in both their DEP mobility and their crossover frequencies. 606 $aHistory of engineering & technology$2bicssc 606 $aTechnology: general issues$2bicssc 610 $aaperture ratio 610 $acell immobilization 610 $acell separation 610 $achromatography 610 $aClausius-Mossotti function 610 $acurvature-induced 610 $adielectric spectroscopy 610 $adielectrophoresis 610 $adielectrophoresis (DEP) 610 $adriving waveform 610 $aDrop-seq 610 $aelectrokinetic 610 $aelectrokinetics 610 $aelectrophoretic display 610 $aelectrowetting display 610 $aexponential function 610 $aHuman African trypanosomiasis 610 $ahydrodynamic trapping 610 $aICEP motility reversal 610 $ainduced charge electrophoresis (ICEP) 610 $ainterdigitated electrodes 610 $ainterfacial polarization 610 $aJanus particles 610 $alab-on-a-chip 610 $amicro-robotics 610 $amicrofluidic 610 $amicrofluidics 610 $amicroparticles 610 $amRNA sequencing 610 $an/a 610 $aoptical trapping 610 $aparticle activation 610 $aparticle focusing 610 $aphase-sensitive detection 610 $aphoretic force spectroscopy 610 $apolystyrene 610 $aproteins 610 $areference grayscale 610 $aresponse speed 610 $aseparation 610 $asingle-cell array 610 $asingle-cell microfluidics 610 $asingle-cell recovery 610 $asleeping sickness 610 $atime constant 610 $atitanium 610 $atridimensional electrodes 610 $atrypanosoma 615 7$aHistory of engineering & technology 615 7$aTechnology: general issues 700 $aMartinez-Duarte$b Rodrigo$4edt$01307639 702 $aMartinez-Duarte$b Rodrigo$4oth 906 $aBOOK 912 $a9910576884703321 996 $aMicromachines for Dielectrophoresis$93028889 997 $aUNINA