LEADER 04729nam 22005652 450 001 9910461204503321 005 20160422102326.0 010 $a1-280-49103-5 010 $a9786613586261 010 $a1-84331-811-3 035 $a(CKB)2670000000160419 035 $a(EBL)875560 035 $a(OCoLC)780445256 035 $a(SSID)ssj0000642283 035 $a(PQKBManifestationID)12206187 035 $a(PQKBTitleCode)TC0000642283 035 $a(PQKBWorkID)10648538 035 $a(PQKB)11104440 035 $a(UkCbUP)CR9781843318118 035 $a(MiAaPQ)EBC875560 035 $a(Au-PeEL)EBL875560 035 $a(CaPaEBR)ebr10539065 035 $a(CaONFJC)MIL358626 035 $a(EXLCZ)992670000000160419 100 $a20120305d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTriangular orthogonal functions for the analysis of continuous time systems /$fAnish Deb, Gautam Sarkar, Anindita Sengupta$b[electronic resource] 210 1$aLondon :$cAnthem Press,$d2011. 215 $a1 online resource (xii, 156 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 02 Oct 2015). 311 $a0-85728-999-3 320 $aIncludes bibliographical references and index. 327 $gCh. 1$tWalsh, Block Pulse, and Related Orthogonal Functions in Systems and Control --$g1.1.$tOrthogonal Functions and their Properties --$g1.2.$tDifferent Types of Nonsinusoidal Orthogonal Functions --$g1.3.$tWalsh Functions in Systems and Control --$g1.4.$tBlock Pulse Functions in Systems and Control --$g1.5.$tConclusion --$tReferences --$gch. 2$tA Newly Proposed Triangular Function Set and Its Properties --$g2.1.$tWalsh Functions and Related Operational Matrix for Integration --$g2.2.$tBPFs and Related Operational Matrices --$g2.3.$tSample-and-Hold Functions [9] --$g2.4.$tFrom BPF to a Newly Defined Complementary Set of Triangular Functions --$g2.5.$tPiecewise Linear Approximation of a Square Integrable Function f(t) --$g2.6.$tOrthogonality of Triangular Basis Functions --$g2.7.$tA Few Properties of Orthogonal TF --$g2.8.$tFunction Approximation via Optimal Triangular Function Coefficients --$g2.9.$tConclusion --$tReferences --$gch. 3$tFunction Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain --$g3.1.$tApproximation of a Square Integrable Time Function f(t) by BPF and TF --$g3.2.$tOperational Matrices for Integration in Triangular Function Domain --$g3.3.$tError Analysis --$g3.4.$tComparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions --$g3.5.$tConclusion --$tReferences --$gch. 4$tAnalysis of Dynamic Systems via State Space Approach --$g4.1.$tAnalysis of Dynamic Systems via Triangular Functions --$g4.2.$tNumerical Experiment [2] --$g4.3.$tConclusion --$tReferences --$gch. 5$tConvolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis --$g5.1.$tConvolution Integral --$g5.2.$tConvolution in Triangular Function Domain [3] --$g5.3.$tConvolution of Two Time Functions in TF Domain --$g5.4.$tNumerical Experiment --$g5.5.$tIntegral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution --$g5.6.$tConclusion --$tReferences --$gch. 6$tIdentification of SISO Control Systems via State Space Approach --$g6.1.$tSystem Identification via State Space Approach --$g6.2.$tNumerical Example [6] --$g6.3.$tConclusion --$tReferences --$gch. 7$tSolution of Integral Equations via Triangular Functions --$g7.1.$tSolution of Integral Equations via Triangular Functions --$g7.2.$tConclusion --$tReferences --$gch. 8$tMicroprocessor Based Simulation of Control Systems Using Orthogonal Functions --$g8.1.$tReview of Delta Function and Sample-and-Hold Function Operational Technique --$g8.2.$tMicroprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] --$g8.3.$tConclusion --$tReferences. 330 $aThis book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family. 606 $aFunctions, Orthogonal 615 0$aFunctions, Orthogonal. 676 $a515.55 700 $aDeba$b Ani?s?a$01055580 702 $aSarkar$b Gautam Prasad 702 $aSengupta$b Anindita 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910461204503321 996 $aTriangular orthogonal functions for the analysis of continuous time systems$92489125 997 $aUNINA