LEADER 01015nam--2200349---450- 001 990002145720203316 005 20090427143207.0 035 $a000214572 035 $aUSA01000214572 035 $a(ALEPH)000214572USA01 035 $a000214572 100 $a20041105d1966----km-y0itay0103----ba 101 $afre 102 $aIT 105 $a||||||||001yy 200 1 $aEtudes de droit romain public et privé$fFernand De Visscher 210 $aMilano$cGiuffrè$d1966 215 $a468 p., 1 tav.$d25 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 700 1$aVISSCHER,$bFernand : de$0194399 801 0$aIT$bsalbc$gISBD 912 $a990002145720203316 951 $aXXII.2.D 22 (ISP I 36)$b16882 E.C.$cISP I$d00207027 959 $aBK 969 $aECO 979 $aSIAV2$b10$c20041105$lUSA01$h1412 979 $aRSIAV3$b90$c20090417$lUSA01$h1541 979 $aRSIAV3$b90$c20090427$lUSA01$h1432 996 $aÉtudes de droit romain public et prive$9743832 997 $aUNISA LEADER 03091nam 22006732 450 001 9910461142603321 005 20160523152217.0 010 $a1-107-21888-8 010 $a1-283-12735-0 010 $a1-139-09229-4 010 $a9786613127358 010 $a0-511-80355-9 010 $a1-139-09178-6 010 $a1-139-08998-6 010 $a1-139-09088-7 010 $a1-139-09280-4 035 $a(CKB)2670000000094846 035 $a(EBL)713038 035 $a(OCoLC)735595627 035 $a(SSID)ssj0000525384 035 $a(PQKBManifestationID)11327050 035 $a(PQKBTitleCode)TC0000525384 035 $a(PQKBWorkID)10507211 035 $a(PQKB)10613068 035 $a(UkCbUP)CR9780511803550 035 $a(MiAaPQ)EBC713038 035 $a(Au-PeEL)EBL713038 035 $a(CaPaEBR)ebr10476534 035 $a(CaONFJC)MIL312735 035 $a(EXLCZ)992670000000094846 100 $a20101018d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRigidity in higher rank Abelian group actions$hVolume 1$iIntroduction and cocycle problem /$fAnatole Katok, Viorel Nit?ica?$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (vi, 313 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v185 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-87909-4 320 $aIncludes bibliographical references and index. 327 $apt. 1. Preliminaries from dynamics and analysis -- pt. 2. Cocycles, cohomology, and rigidity. 330 $aThis self-contained monograph presents rigidity theory for a large class of dynamical systems, differentiable higher rank hyperbolic and partially hyperbolic actions. This first volume describes the subject in detail and develops the principal methods presently used in various aspects of the rigidity theory. Part I serves as an exposition and preparation, including a large collection of examples that are difficult to find in the existing literature. Part II focuses on cocycle rigidity, which serves as a model for rigidity phenomena as well as a useful tool for studying them. The book is an ideal reference for applied mathematicians and scientists working in dynamical systems and a useful introduction for graduate students interested in entering the field. Its wealth of examples also makes it excellent supplementary reading for any introductory course in dynamical systems. 410 0$aCambridge tracts in mathematics ;$v185. 606 $aRigidity (Geometry) 606 $aAbelian groups 615 0$aRigidity (Geometry) 615 0$aAbelian groups. 676 $a512/.25 700 $aKatok$b A. B.$022857 702 $aNit?ica?$b Viorel 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910461142603321 996 $aRigidity in higher rank Abelian group actions$92463932 997 $aUNINA LEADER 01530cam2-2200457---450 001 990005871120203316 005 20200429084534.0 035 $a000587112 035 $aUSA01000587112 035 $a(ALEPH)000587112USA01 035 $a000587112 100 $a20130712d1909----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> pensiero di Galileo Galilei$eframmenti filosofici$fscelti e ordinati da Giovanni Papini 210 $aLanciano$cCarabba$d1909 215 $a117 p.$d20 cm 225 2 $aCultura dell'anima$v2 410 0$1001000318122$12001$aCultura dell'anima$v, 2 600 1$aGalilei,$bGalileo$xFilosofia$2BNCF 676 $a195 700 1$aGALILEI,$bGalileo$04160 702 1$aPAPINI,$bGiovanni$f<1881-1956 > 801 0$aIT$bsalbc$gISBD 912 $a990005871120203316 951 $aXV.2.A. 202 82$b3392 F.C.$cXV.2.A.$d00342118 959 $aBK 969 $aCUOMO 979 $aAMENDOLA$b90$c20130712$lUSA01$h1117 979 $aAMENDOLA$b90$c20130712$lUSA01$h1118 979 $aAMENDOLA$b90$c20130712$lUSA01$h1123 979 $aAMENDOLA$b90$c20130712$lUSA01$h1126 979 $aAMENDOLA$b90$c20130712$lUSA01$h1136 979 $aAMENDOLA$b90$c20130712$lUSA01$h1155 979 $aAMENDOLA$b90$c20130712$lUSA01$h1312 979 $aAMENDOLA$b90$c20130712$lUSA01$h1350 979 $aAMENDOLA$b90$c20130712$lUSA01$h1538 979 $aANNAMARIA$b90$c20130715$lUSA01$h1459 996 $aPensiero di Galileo Galilei$991830 997 $aUNISA